Cargando…

Endogenous Expression of G-CSF in Rat Dorsal Root Ganglion Neurons after Nerve Injury

Granulocyte colony-stimulating factor (G-CSF) has been reported to modulate pain function following nerve injury. However, the expression of endogenous G-CSF in the dorsal root ganglion (DRG) and the response to nerve injury remain unclear. In the present study, we demonstrated that G-CSF and G-CSFR...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeh, Chun-Chang, Yang, Chih-Ping, Ma, Kuo-Hsing, Shih, Jui-Hu, Tseng, Ching-San, Huang, Yuahn-Sieh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303554/
https://www.ncbi.nlm.nih.gov/pubmed/34356190
http://dx.doi.org/10.3390/brainsci11070956
Descripción
Sumario:Granulocyte colony-stimulating factor (G-CSF) has been reported to modulate pain function following nerve injury. However, the expression of endogenous G-CSF in the dorsal root ganglion (DRG) and the response to nerve injury remain unclear. In the present study, we demonstrated that G-CSF and G-CSFR are mainly expressed in both small- and medium-diameter DRG neurons in rats and are responsible for transmitting pain responses. G-CSF and G-CSFR were co-expressed in certain nociceptive DRG neurons. In addition, G-CSF was expressed in satellite glial cells around large-diameter DRG neurons. After sciatic nerve injury, the number of G-CSF-positive DRG neurons was increased in both the ipsilateral and contralateral lesion sites in rats. However, G-CSF expression in satellite glial cells was not affected by nerve injury. To clarify the role of G-CSF in pain, exogenous G-CSF was administered to a rat model of neuropathic pain induced by partial sciatic nerve transaction (PST). Our results indicate that treatment with G-CSF did not attenuate but exacerbated neuropathic pain. In summary, G-CSF may directly activate sensory neurons and contribute to nociceptive signaling.