Cargando…
Quasi-Static Variation of Power-Law and Log-Normal Distributions of Urban Population
We analytically derived and confirmed by empirical data the following three relations from the quasi-time-reversal symmetry, Gibrat’s law, and the non-Gibrat’s property observed in the urban population data of France. The first is the relation between the time variation of the power law and the quas...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303628/ https://www.ncbi.nlm.nih.gov/pubmed/34356449 http://dx.doi.org/10.3390/e23070908 |
Sumario: | We analytically derived and confirmed by empirical data the following three relations from the quasi-time-reversal symmetry, Gibrat’s law, and the non-Gibrat’s property observed in the urban population data of France. The first is the relation between the time variation of the power law and the quasi-time-reversal symmetry in the large-scale range of a system that changes quasi-statically. The second is the relation between the time variation of the log-normal distribution and the quasi-time-reversal symmetry in the mid-scale range. The third is the relation among the parameters of log-normal distribution, non-Gibrat’s property, and quasi-time-reversal symmetry. |
---|