Cargando…
Quasi-Static Variation of Power-Law and Log-Normal Distributions of Urban Population
We analytically derived and confirmed by empirical data the following three relations from the quasi-time-reversal symmetry, Gibrat’s law, and the non-Gibrat’s property observed in the urban population data of France. The first is the relation between the time variation of the power law and the quas...
Autores principales: | Ishikawa, Atushi, Fujimoto, Shouji, Ramos, Arturo, Mizuno, Takayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303628/ https://www.ncbi.nlm.nih.gov/pubmed/34356449 http://dx.doi.org/10.3390/e23070908 |
Ejemplares similares
-
Are Bitcoin bubbles predictable? Combining a generalized Metcalfe’s Law and the Log-Periodic Power Law Singularity model
por: Wheatley, Spencer, et al.
Publicado: (2019) -
Power to the logs!
por: KASIOUMIS, Nikos, et al.
Publicado: (2015) -
Mechanisms for log normal concentration distributions in the environment
por: Andersson, August
Publicado: (2021) -
Simultaneous estimation of log-normal coefficients of variation: Shrinkage and pretest strategies
por: Aldeni, Mahmoud, et al.
Publicado: (2022) -
Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data
por: Silva, Anjali, et al.
Publicado: (2023)