Cargando…

Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids

Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Leyton, Allison, Flores, Liset, Shene, Carolina, Chisti, Yusuf, Larama, Giovanni, Asenjo, Juan A., Armenta, Roberto E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303828/
https://www.ncbi.nlm.nih.gov/pubmed/34356811
http://dx.doi.org/10.3390/md19070386
_version_ 1783727183620997120
author Leyton, Allison
Flores, Liset
Shene, Carolina
Chisti, Yusuf
Larama, Giovanni
Asenjo, Juan A.
Armenta, Roberto E.
author_facet Leyton, Allison
Flores, Liset
Shene, Carolina
Chisti, Yusuf
Larama, Giovanni
Asenjo, Juan A.
Armenta, Roberto E.
author_sort Leyton, Allison
collection PubMed
description Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4–63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.
format Online
Article
Text
id pubmed-8303828
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83038282021-07-25 Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids Leyton, Allison Flores, Liset Shene, Carolina Chisti, Yusuf Larama, Giovanni Asenjo, Juan A. Armenta, Roberto E. Mar Drugs Article Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4–63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16. MDPI 2021-07-06 /pmc/articles/PMC8303828/ /pubmed/34356811 http://dx.doi.org/10.3390/md19070386 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Leyton, Allison
Flores, Liset
Shene, Carolina
Chisti, Yusuf
Larama, Giovanni
Asenjo, Juan A.
Armenta, Roberto E.
Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids
title Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids
title_full Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids
title_fullStr Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids
title_full_unstemmed Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids
title_short Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids
title_sort antarctic thraustochytrids as sources of carotenoids and high-value fatty acids
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303828/
https://www.ncbi.nlm.nih.gov/pubmed/34356811
http://dx.doi.org/10.3390/md19070386
work_keys_str_mv AT leytonallison antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids
AT floresliset antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids
AT shenecarolina antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids
AT chistiyusuf antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids
AT laramagiovanni antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids
AT asenjojuana antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids
AT armentarobertoe antarcticthraustochytridsassourcesofcarotenoidsandhighvaluefattyacids