Cargando…

Brain Functional Correlates of Episodic Memory Using an Ecological Free Recall Task

Episodic Memory (EM) allows us to revive a past event through mental time-travel. The neural correlates of memories recollection have been identified in hippocampal regions and multiple neocortical areas, but few neuroimaging studies have used an ecological task such as a free recall of a structured...

Descripción completa

Detalles Bibliográficos
Autores principales: Neri, Francesco, Cappa, Stefano F., Mencarelli, Lucia, Momi, Davide, Santarnecchi, Emiliano, Rossi, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303916/
https://www.ncbi.nlm.nih.gov/pubmed/34356144
http://dx.doi.org/10.3390/brainsci11070911
Descripción
Sumario:Episodic Memory (EM) allows us to revive a past event through mental time-travel. The neural correlates of memories recollection have been identified in hippocampal regions and multiple neocortical areas, but few neuroimaging studies have used an ecological task such as a free recall of a structured story. Using an ecological fMRI-free recall (FR) task, we aimed to investigate the relevant recruitment of the brain networks associated with the story recollection process and its performance. Fourteen healthy participants listened to a brief story and were tested for Immediate-Recall (IR), a task that is widely used in a neuropsychological evaluation. Then, the subjects underwent an fMRI session, where they had to perform a free recall (FR) of the story subvocally. Finally, the participants were tested for Delayed-Recall (DR). IR and DR scores were significantly (r = 0.942; p < 0.001) correlated. FR enhanced the activity of the Language, the Left Executive Control, the Default Mode and the Precuneus brain networks, with the strongest BOLD signal localized in the left Angular Gyrus (AG) (p < 0.05; FWE-corrected). Furthermore, the story recall performance covaried with specific network activation patterns and the recruitment of the left anterior/posterior AG correlated, respectively, with higher/lower performance scores (p > 0.05). FR seems to be a promising task to investigate ecologically the neural correlates of EM. Moreover, the recruitment of the anterior AG might be a marker for an optimal functioning of the recall process. Preliminary outcomes lay the foundation for the investigation of the brain networks in the healthy and pathological elderly population during FR.