Cargando…

Application of K-Means Clustering Algorithm to Commercial Parameters of Pleurotus spp. Cultivated on Representative Agricultural Wastes from Province of Guayas

Data of the commercial parameters of Pleurotus ostreatus and Pleurotus djamor were analyzed using the data mining technique: K-means clustering algorithm. The parameters evaluated were: biological efficiency, crop yield ratio, productivity rate, nutritional composition, antioxidant and antimicrobial...

Descripción completa

Detalles Bibliográficos
Autores principales: Guevara-Viejó, Fabricio, Valenzuela-Cobos, Juan Diego, Vicente-Galindo, Purificación, Galindo-Villardón, Purificación
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304144/
https://www.ncbi.nlm.nih.gov/pubmed/34356916
http://dx.doi.org/10.3390/jof7070537
Descripción
Sumario:Data of the commercial parameters of Pleurotus ostreatus and Pleurotus djamor were analyzed using the data mining technique: K-means clustering algorithm. The parameters evaluated were: biological efficiency, crop yield ratio, productivity rate, nutritional composition, antioxidant and antimicrobial activities in the production of fruit bodies of 50 strains of Pleurotus ostreatus and 50 strains of Pleurotus djamor, cultivated on the most representative agricultural wastes from the province of Guayas: 80% sugarcane bagasse and 20% wheat straw (M1), and 60% wheat straw and 40% sugarcane bagasse (M2). The database of the parameters obtained in experimental procedures was grouped into three clusters, providing a visualization of the strains with a higher relation to each parameter (vector) measured.