Cargando…
An End-to-End Pipeline for Early Diagnosis of Acute Promyelocytic Leukemia Based on a Compact CNN Model
Timely microscopy screening of peripheral blood smears is essential for the diagnosis of acute promyelocytic leukemia (APL) due to the occurrence of early death (ED) before or during the initial therapy. Screening manually is time-consuming and tedious, and may lead to missed diagnosis or misdiagnos...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304210/ https://www.ncbi.nlm.nih.gov/pubmed/34359320 http://dx.doi.org/10.3390/diagnostics11071237 |
Sumario: | Timely microscopy screening of peripheral blood smears is essential for the diagnosis of acute promyelocytic leukemia (APL) due to the occurrence of early death (ED) before or during the initial therapy. Screening manually is time-consuming and tedious, and may lead to missed diagnosis or misdiagnosis because of subjective bias. To address these problems, we develop a three-step pipeline to help in the early diagnosis of APL from peripheral blood smears. The entire pipeline consists of leukocytes focusing, cell classification and diagnostic opinions. As the key component of the pipeline, a compact classification model based on attention embedded convolutional neural network blocks is proposed to distinguish promyelocytes from normal leukocytes. The compact classification model is validated on both the combination of two public datasets, APL-Cytomorphology_LMU and APL-Cytomorphology_JHH, as well as the clinical dataset, to yield a precision of 96.53% and 99.20%, respectively. The results indicate that our model outperforms the other evaluated popular classification models owing to its better accuracy and smaller size. Furthermore, the entire pipeline is validated on realistic patient data. The proposed method promises to act as an assistant tool for APL diagnosis. |
---|