Cargando…
Memristor-CMOS Hybrid Neuron Circuit with Nonideal-Effect Correction Related to Parasitic Resistance for Binary-Memristor-Crossbar Neural Networks
Voltages and currents in a memristor crossbar can be significantly affected due to nonideal effects such as parasitic source, line, and neuron resistance. These nonideal effects related to the parasitic resistance can cause the degradation of the neural network’s performance realized with the nonide...
Autores principales: | Nguyen, Tien Van, An, Jiyong, Min, Kyeong-Sik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304214/ https://www.ncbi.nlm.nih.gov/pubmed/34357201 http://dx.doi.org/10.3390/mi12070791 |
Ejemplares similares
-
Memristor Crossbar Circuits Implementing Equilibrium Propagation for On-Device Learning
por: Oh, Seokjin, et al.
Publicado: (2023) -
Synapse-Neuron-Aware Training Scheme of Defect-Tolerant Neural Networks with Defective Memristor Crossbars
por: An, Jiyong, et al.
Publicado: (2022) -
Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition
por: Truong, Son Ngoc, et al.
Publicado: (2014) -
Memristor-CMOS Hybrid Circuit for Temporal-Pooling of Sensory and Hippocampal Responses of Cortical Neurons
por: Nguyen, Tien Van, et al.
Publicado: (2019) -
Area-Efficient Mapping of Convolutional Neural Networks to Memristor Crossbars Using Sub-Image Partitioning
por: Oh, Seokjin, et al.
Publicado: (2023)