Cargando…
Predictors of Newborn’s Weight for Height: A Machine Learning Study Using Nationwide Multicenter Ultrasound Data
There has been no machine learning study with a rich collection of clinical, sonographic markers to compare the performance measures for a variety of newborns’ weight-for-height indicators. This study compared the performance measures for a variety of newborns’ weight-for-height indicators based on...
Autores principales: | Ahn, Ki Hoon, Lee, Kwang-Sig, Lee, Se Jin, Kwon, Sung Ok, Na, Sunghun, Kim, Kyongjin, Kang, Hye Sim, Lee, Kyung A, Won, Hye-Sung, Kim, Moon Young, Hwang, Han Sung, Park, Mi Hye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304217/ https://www.ncbi.nlm.nih.gov/pubmed/34359366 http://dx.doi.org/10.3390/diagnostics11071280 |
Ejemplares similares
-
Prediction of newborn’s body mass index using nationwide multicenter ultrasound data: a machine-learning study
por: Lee, Kwang-Sig, et al.
Publicado: (2021) -
Prediction of Emergency Cesarean Section Using Machine Learning Methods: Development and External Validation of a Nationwide Multicenter Dataset in Republic of Korea
por: Wie, Jeong Ha, et al.
Publicado: (2022) -
Height and Risk of Vitiligo: A Nationwide Cohort Study
por: Lee, Young-Bok, et al.
Publicado: (2021) -
Ultrasonographic ovarian mass scoring system for predicting malignancy in pregnant women with ovarian mass
por: Lee, Se Jin, et al.
Publicado: (2022) -
Nationwide Multicenter Study of Eosinophilic Esophagitis in Korean Children
por: Lee, Kunsong, et al.
Publicado: (2020)