Cargando…

Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics

The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagno...

Descripción completa

Detalles Bibliográficos
Autores principales: Yousefi, Bardia, Kawakita, Satoru, Amini, Arya, Akbari, Hamed, Advani, Shailesh M., Akhloufi, Moulay, Maldague, Xavier P. V., Ahadian, Samad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304336/
https://www.ncbi.nlm.nih.gov/pubmed/34300266
http://dx.doi.org/10.3390/jcm10143100
Descripción
Sumario:The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson–Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4–74.4%) for multiclass and 89.6% (88.4–90.7%) for binary-class classification.