Cargando…
Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics
The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagno...
Autores principales: | Yousefi, Bardia, Kawakita, Satoru, Amini, Arya, Akbari, Hamed, Advani, Shailesh M., Akhloufi, Moulay, Maldague, Xavier P. V., Ahadian, Samad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304336/ https://www.ncbi.nlm.nih.gov/pubmed/34300266 http://dx.doi.org/10.3390/jcm10143100 |
Ejemplares similares
-
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays
por: Chetoui, Mohamed, et al.
Publicado: (2022) -
Dual-Intended Deep Learning Model for Breast Cancer Diagnosis in Ultrasound Imaging
por: Vigil, Nicolle, et al.
Publicado: (2022) -
Detecting Vasodilation as Potential Diagnostic Biomarker in Breast Cancer Using Deep Learning-Driven Thermomics
por: Yousefi, Bardia, et al.
Publicado: (2020) -
Neutrality and impartiality : the university and political commitment /
Publicado: (1975) -
Deep Learning Methods for Chest Disease Detection Using Radiography Images
por: Nasser, Adnane Ait, et al.
Publicado: (2023)