Cargando…
Redundant Information Neural Estimation
We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the “redundant information”. We show that existing definitions of the redundant information...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304362/ https://www.ncbi.nlm.nih.gov/pubmed/34356463 http://dx.doi.org/10.3390/e23070922 |
_version_ | 1783727316530102272 |
---|---|
author | Kleinman, Michael Achille, Alessandro Soatto, Stefano Kao, Jonathan C. |
author_facet | Kleinman, Michael Achille, Alessandro Soatto, Stefano Kao, Jonathan C. |
author_sort | Kleinman, Michael |
collection | PubMed |
description | We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the “redundant information”. We show that existing definitions of the redundant information can be recast in terms of an optimization over a family of functions. In contrast to previous information decompositions, which can only be evaluated for discrete variables over small alphabets, we show that optimizing over functions enables the approximation of the redundant information for high-dimensional and continuous predictors. We demonstrate this on high-dimensional image classification and motor-neuroscience tasks. |
format | Online Article Text |
id | pubmed-8304362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83043622021-07-25 Redundant Information Neural Estimation Kleinman, Michael Achille, Alessandro Soatto, Stefano Kao, Jonathan C. Entropy (Basel) Article We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the “redundant information”. We show that existing definitions of the redundant information can be recast in terms of an optimization over a family of functions. In contrast to previous information decompositions, which can only be evaluated for discrete variables over small alphabets, we show that optimizing over functions enables the approximation of the redundant information for high-dimensional and continuous predictors. We demonstrate this on high-dimensional image classification and motor-neuroscience tasks. MDPI 2021-07-20 /pmc/articles/PMC8304362/ /pubmed/34356463 http://dx.doi.org/10.3390/e23070922 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kleinman, Michael Achille, Alessandro Soatto, Stefano Kao, Jonathan C. Redundant Information Neural Estimation |
title | Redundant Information Neural Estimation |
title_full | Redundant Information Neural Estimation |
title_fullStr | Redundant Information Neural Estimation |
title_full_unstemmed | Redundant Information Neural Estimation |
title_short | Redundant Information Neural Estimation |
title_sort | redundant information neural estimation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304362/ https://www.ncbi.nlm.nih.gov/pubmed/34356463 http://dx.doi.org/10.3390/e23070922 |
work_keys_str_mv | AT kleinmanmichael redundantinformationneuralestimation AT achillealessandro redundantinformationneuralestimation AT soattostefano redundantinformationneuralestimation AT kaojonathanc redundantinformationneuralestimation |