Cargando…

Redundant Information Neural Estimation

We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the “redundant information”. We show that existing definitions of the redundant information...

Descripción completa

Detalles Bibliográficos
Autores principales: Kleinman, Michael, Achille, Alessandro, Soatto, Stefano, Kao, Jonathan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304362/
https://www.ncbi.nlm.nih.gov/pubmed/34356463
http://dx.doi.org/10.3390/e23070922
_version_ 1783727316530102272
author Kleinman, Michael
Achille, Alessandro
Soatto, Stefano
Kao, Jonathan C.
author_facet Kleinman, Michael
Achille, Alessandro
Soatto, Stefano
Kao, Jonathan C.
author_sort Kleinman, Michael
collection PubMed
description We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the “redundant information”. We show that existing definitions of the redundant information can be recast in terms of an optimization over a family of functions. In contrast to previous information decompositions, which can only be evaluated for discrete variables over small alphabets, we show that optimizing over functions enables the approximation of the redundant information for high-dimensional and continuous predictors. We demonstrate this on high-dimensional image classification and motor-neuroscience tasks.
format Online
Article
Text
id pubmed-8304362
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83043622021-07-25 Redundant Information Neural Estimation Kleinman, Michael Achille, Alessandro Soatto, Stefano Kao, Jonathan C. Entropy (Basel) Article We introduce the Redundant Information Neural Estimator (RINE), a method that allows efficient estimation for the component of information about a target variable that is common to a set of sources, known as the “redundant information”. We show that existing definitions of the redundant information can be recast in terms of an optimization over a family of functions. In contrast to previous information decompositions, which can only be evaluated for discrete variables over small alphabets, we show that optimizing over functions enables the approximation of the redundant information for high-dimensional and continuous predictors. We demonstrate this on high-dimensional image classification and motor-neuroscience tasks. MDPI 2021-07-20 /pmc/articles/PMC8304362/ /pubmed/34356463 http://dx.doi.org/10.3390/e23070922 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kleinman, Michael
Achille, Alessandro
Soatto, Stefano
Kao, Jonathan C.
Redundant Information Neural Estimation
title Redundant Information Neural Estimation
title_full Redundant Information Neural Estimation
title_fullStr Redundant Information Neural Estimation
title_full_unstemmed Redundant Information Neural Estimation
title_short Redundant Information Neural Estimation
title_sort redundant information neural estimation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304362/
https://www.ncbi.nlm.nih.gov/pubmed/34356463
http://dx.doi.org/10.3390/e23070922
work_keys_str_mv AT kleinmanmichael redundantinformationneuralestimation
AT achillealessandro redundantinformationneuralestimation
AT soattostefano redundantinformationneuralestimation
AT kaojonathanc redundantinformationneuralestimation