Cargando…
Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization
Cutting tool wear reduces the quality of the product in production processes. The optimization of both the machining parameters and tool life reliability is an increasing research trend to save manufacturing resources. In the present work, we introduced a computational approach in estimating the too...
Autores principales: | Alajmi, Mahdi S., Almeshal, Abdullah M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304365/ https://www.ncbi.nlm.nih.gov/pubmed/34300691 http://dx.doi.org/10.3390/ma14143773 |
Ejemplares similares
-
Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
por: Alajmi, Mahdi S., et al.
Publicado: (2020) -
Predicting the Tool Wear of a Drilling Process Using Novel Machine Learning XGBoost-SDA
por: Alajmi, Mahdi S., et al.
Publicado: (2020) -
Tool Wear State Identification Based on SVM Optimized by the Improved Northern Goshawk Optimization
por: Wang, Jiaqi, et al.
Publicado: (2023) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Comparative Evaluation of Surface Quality, Tool Wear, and Specific Cutting Energy for Wiper and Conventional Carbide Inserts in Hard Turning of AISI 4340 Alloy Steel
por: Abbas, Adel T., et al.
Publicado: (2020)