Cargando…
Classical and Neural Network Machine Learning to Determine the Risk of Marijuana Use
Marijuana is the most commonly abused drug for military personnel tested at the Air Force Drug Testing Laboratory. A publicly available dataset of drug use, personality trait scores and demographic data was modeled with logistic regression, decision tree and neural network models to determine the ex...
Autores principales: | Zoboroski, Laura, Wagner, Torrey, Langhals, Brent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304402/ https://www.ncbi.nlm.nih.gov/pubmed/34299915 http://dx.doi.org/10.3390/ijerph18147466 |
Ejemplares similares
-
Biomechanical and Psychological Predictors of Failure in the Air Force Physical Fitness Test
por: Turner, Jeffrey, et al.
Publicado: (2022) -
Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents
por: Negriff, Sonya, et al.
Publicado: (2022) -
Exploring Impact of Marijuana (Cannabis) Abuse on Adults Using Machine Learning
por: Choi, Jeeyae, et al.
Publicado: (2021) -
Marijuana use and high-risk health behaviors among diverse college students post- legalization of recreational marijuana use
por: Chandler, Laura, et al.
Publicado: (2021) -
Uses of Marijuana
por: Simeone, Joseph F.
Publicado: (1972)