Cargando…
Application of Adaptive MOMEDA with Iterative Autocorrelation to Enhance Weak Features of Hoist Bearings
Low-speed hoist bearings are characterized by fault features that are weak and difficult to extract. Multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is an effective method for extracting periodic pulses in a signal. However, the decomposition effect of MOMEDA largely depends on th...
Autores principales: | Li, Tengyu, Kou, Ziming, Wu, Juan, Yang, Fen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304584/ https://www.ncbi.nlm.nih.gov/pubmed/34206517 http://dx.doi.org/10.3390/e23070789 |
Ejemplares similares
-
Application of Mutual Information-Sample Entropy Based MED-ICEEMDAN De-Noising Scheme for Weak Fault Diagnosis of Hoist Bearing
por: Yang, Fen, et al.
Publicado: (2018) -
Application of ICEEMDAN Energy Entropy and AFSA-SVM for Fault Diagnosis of Hoist Sheave Bearing
por: Kou, Ziming, et al.
Publicado: (2020) -
MVMD-MOMEDA-TEO Model and Its Application in Feature Extraction for Rolling Bearings
por: Li, Zhuorui, et al.
Publicado: (2019) -
A Rolling Bearing Fault Feature Extraction Algorithm Based on IPOA-VMD and MOMEDA
por: Yi, Kang, et al.
Publicado: (2023) -
Hoisting the flag
Publicado: (1986)