Cargando…

PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer

Hepatocellular carcinoma (HCC) records the second-lowest 5-year survival rate despite the avalanche of research into diagnosis and therapy. One of the major obstacles in treatment is chemoresistance to drugs such as 5-fluorouracil (5-FU), making identification and elucidation of chemoresistance regu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jiyeon, Hwang, Ji-Hyun, Chun, Harim, Woo, Wonjin, Oh, Sekyung, Choi, Jungmin, Kim, Lark Kyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304620/
https://www.ncbi.nlm.nih.gov/pubmed/34299245
http://dx.doi.org/10.3390/ijms22147614
Descripción
Sumario:Hepatocellular carcinoma (HCC) records the second-lowest 5-year survival rate despite the avalanche of research into diagnosis and therapy. One of the major obstacles in treatment is chemoresistance to drugs such as 5-fluorouracil (5-FU), making identification and elucidation of chemoresistance regulators highly valuable. As the regulatory landscape grows to encompass non-coding genes such as long non-coding RNAs (lncRNAs), a relatively new class of lncRNA has emerged in the form of pseudogene-derived lncRNAs. Through bioinformatics analyses of the TCGA LIHC dataset, we have systematically identified pseudogenes of prognostic value. Initial experimental validation of selected pseudogene-derived lncRNA (PLEKHA8P1) and its parental gene (PLEKHA8), a well-studied transport protein in Golgi complex recently implicated as an oncogene in both colorectal and liver cancer, indicates that the pseudogene/parental gene pair promotes tumor progression and that their dysregulated expression levels affect 5-FU-induced chemoresistance in human HCC cell line FT3-7. Our study has thus confirmed cancer-related functions of PLEKHA8, and laid the groundwork for identification and validation of oncogenic pseudogene-derived lncRNA that shows potential as a novel therapeutic target in circumventing chemoresistance induced by 5-FU.