Cargando…
Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features
Cross-modality person re-identification is the study of images of people matching under different modalities (RGB modality, IR modality). Given one RGB image of a pedestrian collected under visible light in the daytime, cross-modality person re-identification aims to determine whether the same pedes...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304692/ https://www.ncbi.nlm.nih.gov/pubmed/34356460 http://dx.doi.org/10.3390/e23070919 |
_version_ | 1783727396160012288 |
---|---|
author | Han, Chengmei Pan, Peng Zheng, Aihua Tang, Jin |
author_facet | Han, Chengmei Pan, Peng Zheng, Aihua Tang, Jin |
author_sort | Han, Chengmei |
collection | PubMed |
description | Cross-modality person re-identification is the study of images of people matching under different modalities (RGB modality, IR modality). Given one RGB image of a pedestrian collected under visible light in the daytime, cross-modality person re-identification aims to determine whether the same pedestrian appears in infrared images (IR images) collected by infrared cameras at night, and vice versa. Cross-modality person re-identification can solve the task of pedestrian recognition in low light or at night. This paper aims to improve the degree of similarity for the same pedestrian in two modalities by improving the feature expression ability of the network and designing appropriate loss functions. To implement our approach, we introduce a deep neural network structure combining heterogeneous center loss (HC loss) and a non-local mechanism. On the one hand, this can heighten the performance of feature representation of the feature learning module, and, on the other hand, it can improve the similarity of cross-modality within the class. Experimental data show that the network achieves excellent performance on SYSU-MM01 datasets. |
format | Online Article Text |
id | pubmed-8304692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83046922021-07-25 Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features Han, Chengmei Pan, Peng Zheng, Aihua Tang, Jin Entropy (Basel) Article Cross-modality person re-identification is the study of images of people matching under different modalities (RGB modality, IR modality). Given one RGB image of a pedestrian collected under visible light in the daytime, cross-modality person re-identification aims to determine whether the same pedestrian appears in infrared images (IR images) collected by infrared cameras at night, and vice versa. Cross-modality person re-identification can solve the task of pedestrian recognition in low light or at night. This paper aims to improve the degree of similarity for the same pedestrian in two modalities by improving the feature expression ability of the network and designing appropriate loss functions. To implement our approach, we introduce a deep neural network structure combining heterogeneous center loss (HC loss) and a non-local mechanism. On the one hand, this can heighten the performance of feature representation of the feature learning module, and, on the other hand, it can improve the similarity of cross-modality within the class. Experimental data show that the network achieves excellent performance on SYSU-MM01 datasets. MDPI 2021-07-20 /pmc/articles/PMC8304692/ /pubmed/34356460 http://dx.doi.org/10.3390/e23070919 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Han, Chengmei Pan, Peng Zheng, Aihua Tang, Jin Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features |
title | Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features |
title_full | Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features |
title_fullStr | Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features |
title_full_unstemmed | Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features |
title_short | Cross-Modality Person Re-Identification Based on Heterogeneous Center Loss and Non-Local Features |
title_sort | cross-modality person re-identification based on heterogeneous center loss and non-local features |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304692/ https://www.ncbi.nlm.nih.gov/pubmed/34356460 http://dx.doi.org/10.3390/e23070919 |
work_keys_str_mv | AT hanchengmei crossmodalitypersonreidentificationbasedonheterogeneouscenterlossandnonlocalfeatures AT panpeng crossmodalitypersonreidentificationbasedonheterogeneouscenterlossandnonlocalfeatures AT zhengaihua crossmodalitypersonreidentificationbasedonheterogeneouscenterlossandnonlocalfeatures AT tangjin crossmodalitypersonreidentificationbasedonheterogeneouscenterlossandnonlocalfeatures |