Cargando…

LP1 and LP2: Dual-Target MOPr/DOPr Ligands as Drug Candidates for Persistent Pain Relief

Although persistent pain is estimated to affect about 20% of the adult population, current treatments have poor results. Polypharmacology, which is the administration of more than one drug targeting on two or more different sites of action, represents a prominent therapeutic approach for the clinica...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasquinucci, Lorella, Parenti, Carmela, Georgoussi, Zafiroula, Reina, Lorena, Tomarchio, Emilia, Turnaturi, Rita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305117/
https://www.ncbi.nlm.nih.gov/pubmed/34299443
http://dx.doi.org/10.3390/molecules26144168
Descripción
Sumario:Although persistent pain is estimated to affect about 20% of the adult population, current treatments have poor results. Polypharmacology, which is the administration of more than one drug targeting on two or more different sites of action, represents a prominent therapeutic approach for the clinical management of persistent pain. Thus, in the drug discovery process the “one-molecule-multiple targets” strategy nowadays is highly recognized. Indeed, multitarget ligands displaying a better antinociceptive activity with fewer side effects, combined with favorable pharmacokinetic and pharmacodynamic characteristics, have already been shown. Multitarget ligands possessing non-opioid/opioid and opioid/opioid mechanisms of action are considered as potential drug candidates for the management of various pain conditions. In particular, dual-target MOPr (mu opioid peptide receptor)/DOPr (delta opioid peptide receptor) ligands exhibit an improved antinociceptive profile associated with a reduced tolerance-inducing capability. The benzomorphan-based compounds LP1 and LP2 belong to this class of dual-target MOPr/DOPr ligands. In the present manuscript, the structure–activity relationships and the pharmacological fingerprint of LP1 and LP2 compounds as suitable drug candidates for persistent pain relief is described.