Cargando…
Rapid Screening of 350 Pesticide Residues in Vegetable and Fruit Juices by Multi-Plug Filtration Cleanup Method Combined with Gas Chromatography-Electrostatic Field Orbitrap High Resolution Mass Spectrometry
A new method for screening pesticide residues in vegetable and fruit juices by the multi-plug filtration cleanup (m-PFC) method combined with gas chromatography-electrostatic field orbitrap high resolution mass spectrometry(GC-Orbitrap/MS) was developed. The samples were extracted with acetonitrile,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305287/ https://www.ncbi.nlm.nih.gov/pubmed/34359521 http://dx.doi.org/10.3390/foods10071651 |
Sumario: | A new method for screening pesticide residues in vegetable and fruit juices by the multi-plug filtration cleanup (m-PFC) method combined with gas chromatography-electrostatic field orbitrap high resolution mass spectrometry(GC-Orbitrap/MS) was developed. The samples were extracted with acetonitrile, purified with m-PFC and determined by GC-Orbitrap/MS. Qualitative analysis was confirmed by retention time, accurate molecular mass and quantitative analysis were performed with the matrix standard calibration. It could eliminate matrix interference effectively. Eight kinds of typical samples (orange juice, apple juice, grape juice, strawberry juice, celery juice, carrot juice, cucumber juice, tomato juice) were evaluated. The linear ranges of the 350 pesticides were from 5 to 500 μg/kg, with good correlation coefficients greater than 0.990. The limits of detection (LODs) were 0.3–3.0 μg/kg and the limits of quantification (LOQs) were 1.0–10.0 μg/kg. The average recoveries at three spiked levels of 10, 100, 200 μg/kg were in the range of 72.8–122.4%, with relative standard deviations (RSDs) of 2.0–10.8%. The method has effectively improved the determination efficiency of pesticide residue screening by high-resolution mass spectrometry in vegetable and fruit juices. |
---|