Cargando…
Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures
Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its tra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305412/ https://www.ncbi.nlm.nih.gov/pubmed/34356104 http://dx.doi.org/10.3390/genes12071088 |
_version_ | 1783727568387571712 |
---|---|
author | Poeta, Loredana Padula, Agnese Lioi, Maria Brigida van Bokhoven, Hans Miano, Maria Giuseppina |
author_facet | Poeta, Loredana Padula, Agnese Lioi, Maria Brigida van Bokhoven, Hans Miano, Maria Giuseppina |
author_sort | Poeta, Loredana |
collection | PubMed |
description | Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless related-homeobox (ARX), PHD Finger Protein 8 (PHF8) and Zinc Finger Protein 711 (ZNF711) are functionally connected. Here, we show their relation to each other with respect to the expression levels in human and mouse datasets and in vivo mouse analysis indicating that the coexpression of these syntenic X-chromosomal genes is temporally regulated in brain areas and cellular sub-types. In co-immunoprecipitation assays, we found that the homeotic transcription factor ARX interacts with the histone demethylase PHF8, indicating that this transcriptional axis is highly intersected. Furthermore, the functional impact of pathogenic mutations of ARX, KDM5C, PHF8 and ZNF711 was tested in lymphoblastoid cell lines (LCLs) derived from children with varying levels of syndromic ID establishing the direct correlation between defects in the KDM5C-H3K4me3 pathway and ID severity. These findings reveal novel insights into epigenetic processes underpinning NDD pathogenesis and provide new avenues for assessing developmental timing and critical windows for potential treatments. |
format | Online Article Text |
id | pubmed-8305412 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83054122021-07-25 Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures Poeta, Loredana Padula, Agnese Lioi, Maria Brigida van Bokhoven, Hans Miano, Maria Giuseppina Genes (Basel) Article Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless related-homeobox (ARX), PHD Finger Protein 8 (PHF8) and Zinc Finger Protein 711 (ZNF711) are functionally connected. Here, we show their relation to each other with respect to the expression levels in human and mouse datasets and in vivo mouse analysis indicating that the coexpression of these syntenic X-chromosomal genes is temporally regulated in brain areas and cellular sub-types. In co-immunoprecipitation assays, we found that the homeotic transcription factor ARX interacts with the histone demethylase PHF8, indicating that this transcriptional axis is highly intersected. Furthermore, the functional impact of pathogenic mutations of ARX, KDM5C, PHF8 and ZNF711 was tested in lymphoblastoid cell lines (LCLs) derived from children with varying levels of syndromic ID establishing the direct correlation between defects in the KDM5C-H3K4me3 pathway and ID severity. These findings reveal novel insights into epigenetic processes underpinning NDD pathogenesis and provide new avenues for assessing developmental timing and critical windows for potential treatments. MDPI 2021-07-18 /pmc/articles/PMC8305412/ /pubmed/34356104 http://dx.doi.org/10.3390/genes12071088 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Poeta, Loredana Padula, Agnese Lioi, Maria Brigida van Bokhoven, Hans Miano, Maria Giuseppina Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures |
title | Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures |
title_full | Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures |
title_fullStr | Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures |
title_full_unstemmed | Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures |
title_short | Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures |
title_sort | analysis of a set of kdm5c regulatory genes mutated in neurodevelopmental disorders identifies temporal coexpression brain signatures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305412/ https://www.ncbi.nlm.nih.gov/pubmed/34356104 http://dx.doi.org/10.3390/genes12071088 |
work_keys_str_mv | AT poetaloredana analysisofasetofkdm5cregulatorygenesmutatedinneurodevelopmentaldisordersidentifiestemporalcoexpressionbrainsignatures AT padulaagnese analysisofasetofkdm5cregulatorygenesmutatedinneurodevelopmentaldisordersidentifiestemporalcoexpressionbrainsignatures AT lioimariabrigida analysisofasetofkdm5cregulatorygenesmutatedinneurodevelopmentaldisordersidentifiestemporalcoexpressionbrainsignatures AT vanbokhovenhans analysisofasetofkdm5cregulatorygenesmutatedinneurodevelopmentaldisordersidentifiestemporalcoexpressionbrainsignatures AT mianomariagiuseppina analysisofasetofkdm5cregulatorygenesmutatedinneurodevelopmentaldisordersidentifiestemporalcoexpressionbrainsignatures |