Cargando…

Description of a CSF-Enriched miRNA Panel for the Study of Neurological Diseases

Background: The study of circulating miRNAs in CSF has gained tremendous attention during the last years, as these molecules might be promising candidates to be used as biomarkers and provide new insights into the disease pathology of neurological disorders. Objective: The main aim of this study was...

Descripción completa

Detalles Bibliográficos
Autores principales: Muñoz-San Martín, María, Gomez, Imma, Miguela, Albert, Belchí, Olga, Robles-Cedeño, René, Quintana, Ester, Ramió-Torrentà, Lluís
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305419/
https://www.ncbi.nlm.nih.gov/pubmed/34206241
http://dx.doi.org/10.3390/life11070594
Descripción
Sumario:Background: The study of circulating miRNAs in CSF has gained tremendous attention during the last years, as these molecules might be promising candidates to be used as biomarkers and provide new insights into the disease pathology of neurological disorders. Objective: The main aim of this study was to describe an OpenArray panel of CSF-enriched miRNAs to offer a suitable tool to identify and characterize new molecular signatures in different neurological diseases. Methods: Two hundred and fifteen human miRNAs were selected to be included in the panel, and their expression and abundance in CSF samples were analyzed. In addition, their stability was studied in order to propose suitable endogenous controls for CSF miRNA studies. Results: miR-143-3p and miR-23a-3p were detected in all CSF samples, while another 80 miRNAs were detected in at least 70% of samples. miR-770-5p was the most abundant miRNA in CSF, presenting the lowest mean Cq value. In addition, miR-26b-5p, miR-335-5p and miR-92b-3p were the most stable miRNAs and could be suitable endogenous normalizers for CSF miRNA studies. Conclusions: These OpenArray plates might be a suitable and efficient tool to identify and characterize new molecular signatures in different neurological diseases and would improve the yield of miRNA detection in CSF.