Cargando…

Preliminary Investigations into the Use of Amylases and Lactic Acid Bacteria to Obtain Fermented Vegetable Products

Legumes are valuable sources of proteins and other functional components. However, the high starch content can be an impediment in developing new vegan food formulations. Enzyme-assisted hydrolysis was used to hydrolyze the starch from chickpea and broad bean vegetable milk to further develop vegeta...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasilean, Ina, Aprodu, Iuliana, Garnai, Maria, Munteanu, Valeriu, Patrașcu, Livia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305426/
https://www.ncbi.nlm.nih.gov/pubmed/34359401
http://dx.doi.org/10.3390/foods10071530
Descripción
Sumario:Legumes are valuable sources of proteins and other functional components. However, the high starch content can be an impediment in developing new vegan food formulations. Enzyme-assisted hydrolysis was used to hydrolyze the starch from chickpea and broad bean vegetable milk to further develop vegetable lactic acid-fermented products. The antioxidant activity of legumes was tested, and it was observed that the overall antioxidant activity (DPPH radical scavenging ability) significantly increased after enzyme-assisted hydrolysis while total phenols content decreased. The obtained vegetable milk was then fermented using exopolysaccharides-producing lactic acid bacteria. A significant decolorization was observed after fermentation in the case of broad bean-based products. Rheological behavior of the fermented products was determined using small amplitude oscillatory measurements and the three-interval thixotropy test. Results showed higher complex viscosity values for broad bean-based products, which displayed a weak gel-like structure. The starter cultures used for vegetable milk samples fermentation influenced the resistance to flow.