Cargando…
The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8
SIMPLE SUMMARY: Worldwide, pest control involves extensive use of insecticides, which results in serious environmental pollution problems. On the other hand, insecticides can be recognized by proteins named CSPs in insects, which allow them to accurately respond to these environmental chemical signa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305471/ https://www.ncbi.nlm.nih.gov/pubmed/34357261 http://dx.doi.org/10.3390/insects12070602 |
_version_ | 1783727582453170176 |
---|---|
author | Jia, Qian Zeng, Hui Zhang, Jinbing Gao, Shangfang Xiao, Nan Tang, Jing Dong, Xiaolin Xie, Wei |
author_facet | Jia, Qian Zeng, Hui Zhang, Jinbing Gao, Shangfang Xiao, Nan Tang, Jing Dong, Xiaolin Xie, Wei |
author_sort | Jia, Qian |
collection | PubMed |
description | SIMPLE SUMMARY: Worldwide, pest control involves extensive use of insecticides, which results in serious environmental pollution problems. On the other hand, insecticides can be recognized by proteins named CSPs in insects, which allow them to accurately respond to these environmental chemical signals for their survival, but the mechanism is poorly studied. Here, we report the crystal structure of the CSP8 protein from the tobacco cutworm Spodoptera litura, a major plant pest in Asia. We also studied its binding properties to compounds like rhodojaponin III, a non-volatile plant metabolite. Our studies showed that the protein binds to these molecules with different affinities and provided important insight into the molecular recognition mechanism of the sensory protein SlCSP8 and the CSP protein family in general. ABSTRACT: Spodoptera litura F. is a generalist herbivore and one of the most important economic pests feeding on about 300 host plants in many Asian countries. Specific insect behaviors can be stimulated after recognizing chemicals in the external environment through conserved chemosensory proteins (CSPs) in chemoreceptive organs, which are critical components of the olfactory systems. To explore its structural basis for ligand-recognizing capability, we solved the 2.3 Å crystal structure of the apoprotein of S. litura CSP8 (SlCSP8). The SlCSP8 protein displays a conserved spherical shape with a negatively charged surface. Our binding assays showed that SlCSP8 bound several candidate ligands with differential affinities, with rhodojaponin III being the most tightly bound ligand. Our crystallographic and biochemical studies provide important insight into the molecular recognition mechanism of the sensory protein SlCSP8 and the CSP family in general, and they suggest that CSP8 is critical for insects to identify rhodojaponin III, which may aid in the CSP-based rational drug design in the future. |
format | Online Article Text |
id | pubmed-8305471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83054712021-07-25 The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 Jia, Qian Zeng, Hui Zhang, Jinbing Gao, Shangfang Xiao, Nan Tang, Jing Dong, Xiaolin Xie, Wei Insects Article SIMPLE SUMMARY: Worldwide, pest control involves extensive use of insecticides, which results in serious environmental pollution problems. On the other hand, insecticides can be recognized by proteins named CSPs in insects, which allow them to accurately respond to these environmental chemical signals for their survival, but the mechanism is poorly studied. Here, we report the crystal structure of the CSP8 protein from the tobacco cutworm Spodoptera litura, a major plant pest in Asia. We also studied its binding properties to compounds like rhodojaponin III, a non-volatile plant metabolite. Our studies showed that the protein binds to these molecules with different affinities and provided important insight into the molecular recognition mechanism of the sensory protein SlCSP8 and the CSP protein family in general. ABSTRACT: Spodoptera litura F. is a generalist herbivore and one of the most important economic pests feeding on about 300 host plants in many Asian countries. Specific insect behaviors can be stimulated after recognizing chemicals in the external environment through conserved chemosensory proteins (CSPs) in chemoreceptive organs, which are critical components of the olfactory systems. To explore its structural basis for ligand-recognizing capability, we solved the 2.3 Å crystal structure of the apoprotein of S. litura CSP8 (SlCSP8). The SlCSP8 protein displays a conserved spherical shape with a negatively charged surface. Our binding assays showed that SlCSP8 bound several candidate ligands with differential affinities, with rhodojaponin III being the most tightly bound ligand. Our crystallographic and biochemical studies provide important insight into the molecular recognition mechanism of the sensory protein SlCSP8 and the CSP family in general, and they suggest that CSP8 is critical for insects to identify rhodojaponin III, which may aid in the CSP-based rational drug design in the future. MDPI 2021-07-01 /pmc/articles/PMC8305471/ /pubmed/34357261 http://dx.doi.org/10.3390/insects12070602 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jia, Qian Zeng, Hui Zhang, Jinbing Gao, Shangfang Xiao, Nan Tang, Jing Dong, Xiaolin Xie, Wei The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 |
title | The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 |
title_full | The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 |
title_fullStr | The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 |
title_full_unstemmed | The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 |
title_short | The Crystal Structure of the Spodoptera litura Chemosensory Protein CSP8 |
title_sort | crystal structure of the spodoptera litura chemosensory protein csp8 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305471/ https://www.ncbi.nlm.nih.gov/pubmed/34357261 http://dx.doi.org/10.3390/insects12070602 |
work_keys_str_mv | AT jiaqian thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT zenghui thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT zhangjinbing thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT gaoshangfang thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT xiaonan thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT tangjing thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT dongxiaolin thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT xiewei thecrystalstructureofthespodopteraliturachemosensoryproteincsp8 AT jiaqian crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT zenghui crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT zhangjinbing crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT gaoshangfang crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT xiaonan crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT tangjing crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT dongxiaolin crystalstructureofthespodopteraliturachemosensoryproteincsp8 AT xiewei crystalstructureofthespodopteraliturachemosensoryproteincsp8 |