Cargando…
Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency
The present study aims at the isolation and identification of diverse phenolic polyketides from Aloe vera (L.) Burm.f. and Aloe plicatilis (L.) Miller and includes their 5-LOX/COX-1 inhibiting potency. After initial Sephadex-LH20 gel filtration and combined silica gel 60- and RP18-CC, three dihydroi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305570/ https://www.ncbi.nlm.nih.gov/pubmed/34299499 http://dx.doi.org/10.3390/molecules26144223 |
_version_ | 1783727605543862272 |
---|---|
author | Rauwald, Hans Wilhelm Maucher, Ralf Dannhardt, Gerd Kuchta, Kenny |
author_facet | Rauwald, Hans Wilhelm Maucher, Ralf Dannhardt, Gerd Kuchta, Kenny |
author_sort | Rauwald, Hans Wilhelm |
collection | PubMed |
description | The present study aims at the isolation and identification of diverse phenolic polyketides from Aloe vera (L.) Burm.f. and Aloe plicatilis (L.) Miller and includes their 5-LOX/COX-1 inhibiting potency. After initial Sephadex-LH20 gel filtration and combined silica gel 60- and RP18-CC, three dihydroisocoumarins (nonaketides), four 5-methyl-8-C-glucosylchromones (heptaketides) from A. vera, and two hexaketide-naphthalenes from A. plicatilis have been isolated by means of HSCCC. The structures of all polyketides were elucidated by ESI-MS and 2D (1)H/(13)C-NMR (HMQC, HMBC) techniques. The analytical/preparative separation of 3R-feralolide, 3′-O-β-d-glucopyranosyl- and the new 6-O-β-d-glucopyranosyl-3R-feralolide into their respective positional isomers are described here for the first time, including the assignment of the 3R-configuration in all feralolides by comparative CD spectroscopy. The chromones 7-O-methyl-aloesin and 7-O-methyl-aloeresin A were isolated for the first time from A. vera, together with the previously described aloesin (syn. aloeresin B) and aloeresin D. Furthermore, the new 5,6,7,8-tetrahydro-1-O-β-d-glucopyranosyl- 3,6R-dihydroxy-8R-methylnaphtalene was isolated from A. plicatilis, together with the known plicataloside. Subsequently, biological-pharmacological screening was performed to identify Aloe polyketides with anti-inflammatory potential in vitro. In addition to the above constituents, the anthranoids (octaketides) aloe emodin, aloin, 6′-(E)-p-coumaroyl-aloin A and B, and 6′-(E)-p-coumaroyl-7-hydroxy-8-O-methyl-aloin A and B were tested. In the COX-1 examination, only feralolide (10 µM) inhibited the formation of MDA by 24%, whereas the other polyketides did not display any inhibition at all. In the 5-LOX-test, all aloin-type anthranoids (10 µM) inhibited the formation of LTB(4) by about 25–41%. Aloesin also displayed 10% inhibition at 10 µM in this in vitro setup, while the other chromones and naphthalenes did not display any activity. The present study, therefore, demonstrates the importance of low molecular phenolic polyketides for the known overall anti-inflammatory activity of Aloe vera preparations. |
format | Online Article Text |
id | pubmed-8305570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83055702021-07-25 Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency Rauwald, Hans Wilhelm Maucher, Ralf Dannhardt, Gerd Kuchta, Kenny Molecules Article The present study aims at the isolation and identification of diverse phenolic polyketides from Aloe vera (L.) Burm.f. and Aloe plicatilis (L.) Miller and includes their 5-LOX/COX-1 inhibiting potency. After initial Sephadex-LH20 gel filtration and combined silica gel 60- and RP18-CC, three dihydroisocoumarins (nonaketides), four 5-methyl-8-C-glucosylchromones (heptaketides) from A. vera, and two hexaketide-naphthalenes from A. plicatilis have been isolated by means of HSCCC. The structures of all polyketides were elucidated by ESI-MS and 2D (1)H/(13)C-NMR (HMQC, HMBC) techniques. The analytical/preparative separation of 3R-feralolide, 3′-O-β-d-glucopyranosyl- and the new 6-O-β-d-glucopyranosyl-3R-feralolide into their respective positional isomers are described here for the first time, including the assignment of the 3R-configuration in all feralolides by comparative CD spectroscopy. The chromones 7-O-methyl-aloesin and 7-O-methyl-aloeresin A were isolated for the first time from A. vera, together with the previously described aloesin (syn. aloeresin B) and aloeresin D. Furthermore, the new 5,6,7,8-tetrahydro-1-O-β-d-glucopyranosyl- 3,6R-dihydroxy-8R-methylnaphtalene was isolated from A. plicatilis, together with the known plicataloside. Subsequently, biological-pharmacological screening was performed to identify Aloe polyketides with anti-inflammatory potential in vitro. In addition to the above constituents, the anthranoids (octaketides) aloe emodin, aloin, 6′-(E)-p-coumaroyl-aloin A and B, and 6′-(E)-p-coumaroyl-7-hydroxy-8-O-methyl-aloin A and B were tested. In the COX-1 examination, only feralolide (10 µM) inhibited the formation of MDA by 24%, whereas the other polyketides did not display any inhibition at all. In the 5-LOX-test, all aloin-type anthranoids (10 µM) inhibited the formation of LTB(4) by about 25–41%. Aloesin also displayed 10% inhibition at 10 µM in this in vitro setup, while the other chromones and naphthalenes did not display any activity. The present study, therefore, demonstrates the importance of low molecular phenolic polyketides for the known overall anti-inflammatory activity of Aloe vera preparations. MDPI 2021-07-12 /pmc/articles/PMC8305570/ /pubmed/34299499 http://dx.doi.org/10.3390/molecules26144223 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rauwald, Hans Wilhelm Maucher, Ralf Dannhardt, Gerd Kuchta, Kenny Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency |
title | Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency |
title_full | Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency |
title_fullStr | Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency |
title_full_unstemmed | Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency |
title_short | Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency |
title_sort | dihydroisocoumarins, naphthalenes, and further polyketides from aloe vera and a. plicatilis: isolation, identification and their 5-lox/cox-1 inhibiting potency |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305570/ https://www.ncbi.nlm.nih.gov/pubmed/34299499 http://dx.doi.org/10.3390/molecules26144223 |
work_keys_str_mv | AT rauwaldhanswilhelm dihydroisocoumarinsnaphthalenesandfurtherpolyketidesfromaloeveraandaplicatilisisolationidentificationandtheir5loxcox1inhibitingpotency AT maucherralf dihydroisocoumarinsnaphthalenesandfurtherpolyketidesfromaloeveraandaplicatilisisolationidentificationandtheir5loxcox1inhibitingpotency AT dannhardtgerd dihydroisocoumarinsnaphthalenesandfurtherpolyketidesfromaloeveraandaplicatilisisolationidentificationandtheir5loxcox1inhibitingpotency AT kuchtakenny dihydroisocoumarinsnaphthalenesandfurtherpolyketidesfromaloeveraandaplicatilisisolationidentificationandtheir5loxcox1inhibitingpotency |