Cargando…
Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework
Identifying high-risk drivers before an accident happens is necessary for traffic accident control and prevention. Due to the class-imbalance nature of driving data, high-risk samples as the minority class are usually ill-treated by standard classification algorithms. Instead of applying preset samp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305749/ https://www.ncbi.nlm.nih.gov/pubmed/34299986 http://dx.doi.org/10.3390/ijerph18147534 |