Cargando…
Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework
Identifying high-risk drivers before an accident happens is necessary for traffic accident control and prevention. Due to the class-imbalance nature of driving data, high-risk samples as the minority class are usually ill-treated by standard classification algorithms. Instead of applying preset samp...
Autores principales: | Wang, Ke, Xue, Qingwen, Lu, Jian John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305749/ https://www.ncbi.nlm.nih.gov/pubmed/34299986 http://dx.doi.org/10.3390/ijerph18147534 |
Ejemplares similares
-
Risky Driving Behavior Recognition Based on Vehicle Trajectory
por: Chen, Shengdi, et al.
Publicado: (2021) -
Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting
por: Wang, Ke, et al.
Publicado: (2020) -
A novel early diagnostic framework for chronic diseases with class imbalance
por: Yuan, Xiaohan, et al.
Publicado: (2022) -
Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection
por: Seo, Jae-Hyun, et al.
Publicado: (2018) -
Screening PubMed abstracts: is class imbalance always a challenge to machine learning?
por: Lanera, Corrado, et al.
Publicado: (2019)