Cargando…

The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas

Bivalves serve as an important aquaculture product, as they are the source of essential fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in our diet. However, their cultivation in the wild can be affected by fouling organisms that, in turn, affect their EPA and DHA co...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujibayashi, Megumu, Nishimura, Osamu, Sakamaki, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305761/
https://www.ncbi.nlm.nih.gov/pubmed/34202307
http://dx.doi.org/10.3390/md19070369
_version_ 1783727649530576896
author Fujibayashi, Megumu
Nishimura, Osamu
Sakamaki, Takashi
author_facet Fujibayashi, Megumu
Nishimura, Osamu
Sakamaki, Takashi
author_sort Fujibayashi, Megumu
collection PubMed
description Bivalves serve as an important aquaculture product, as they are the source of essential fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in our diet. However, their cultivation in the wild can be affected by fouling organisms that, in turn, affect their EPA and DHA content. The effects of fouling organisms on the EPA and DHA contents of cultivated bivalves have not been well documented. We examined the effects of fouling organisms on the EPA and DHA contents and condition index of cultured oysters, Crassostrea gigas, in an aquaculture system. We sampled two-year-old oysters from five sites in Shizugawa Bay, Japan, in August 2014. Most of the fouling organisms were sponges, macroalgae, and Mytilus galloprovincialis. A significant negative relationship existed between the DHA content in C. gigas and the presence of sponges and macroalgae. A lower C. gigas EPA content corresponded to a higher M. galloprovincialis fouling mass and a lower C. gigas condition index. This can be explained by dietary competition between C. gigas and M. galloprovincialis for diatoms, which were the main producer of EPA in our study sites. Our findings indicate that fouling organisms likely reduce the EPA and DHA content in cultivated oysters. Therefore, our results suggest that the current efforts to remove fouling organisms from oyster clusters is an effective strategy to enhance the content of EPA and DHA in oysters.
format Online
Article
Text
id pubmed-8305761
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83057612021-07-25 The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas Fujibayashi, Megumu Nishimura, Osamu Sakamaki, Takashi Mar Drugs Article Bivalves serve as an important aquaculture product, as they are the source of essential fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in our diet. However, their cultivation in the wild can be affected by fouling organisms that, in turn, affect their EPA and DHA content. The effects of fouling organisms on the EPA and DHA contents of cultivated bivalves have not been well documented. We examined the effects of fouling organisms on the EPA and DHA contents and condition index of cultured oysters, Crassostrea gigas, in an aquaculture system. We sampled two-year-old oysters from five sites in Shizugawa Bay, Japan, in August 2014. Most of the fouling organisms were sponges, macroalgae, and Mytilus galloprovincialis. A significant negative relationship existed between the DHA content in C. gigas and the presence of sponges and macroalgae. A lower C. gigas EPA content corresponded to a higher M. galloprovincialis fouling mass and a lower C. gigas condition index. This can be explained by dietary competition between C. gigas and M. galloprovincialis for diatoms, which were the main producer of EPA in our study sites. Our findings indicate that fouling organisms likely reduce the EPA and DHA content in cultivated oysters. Therefore, our results suggest that the current efforts to remove fouling organisms from oyster clusters is an effective strategy to enhance the content of EPA and DHA in oysters. MDPI 2021-06-25 /pmc/articles/PMC8305761/ /pubmed/34202307 http://dx.doi.org/10.3390/md19070369 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fujibayashi, Megumu
Nishimura, Osamu
Sakamaki, Takashi
The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
title The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
title_full The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
title_fullStr The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
title_full_unstemmed The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
title_short The Negative Relationship between Fouling Organisms and the Content of Eicosapentaenoic Acid and Docosahexaenoic Acid in Cultivated Pacific Oysters, Crassostrea gigas
title_sort negative relationship between fouling organisms and the content of eicosapentaenoic acid and docosahexaenoic acid in cultivated pacific oysters, crassostrea gigas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305761/
https://www.ncbi.nlm.nih.gov/pubmed/34202307
http://dx.doi.org/10.3390/md19070369
work_keys_str_mv AT fujibayashimegumu thenegativerelationshipbetweenfoulingorganismsandthecontentofeicosapentaenoicacidanddocosahexaenoicacidincultivatedpacificoysterscrassostreagigas
AT nishimuraosamu thenegativerelationshipbetweenfoulingorganismsandthecontentofeicosapentaenoicacidanddocosahexaenoicacidincultivatedpacificoysterscrassostreagigas
AT sakamakitakashi thenegativerelationshipbetweenfoulingorganismsandthecontentofeicosapentaenoicacidanddocosahexaenoicacidincultivatedpacificoysterscrassostreagigas
AT fujibayashimegumu negativerelationshipbetweenfoulingorganismsandthecontentofeicosapentaenoicacidanddocosahexaenoicacidincultivatedpacificoysterscrassostreagigas
AT nishimuraosamu negativerelationshipbetweenfoulingorganismsandthecontentofeicosapentaenoicacidanddocosahexaenoicacidincultivatedpacificoysterscrassostreagigas
AT sakamakitakashi negativerelationshipbetweenfoulingorganismsandthecontentofeicosapentaenoicacidanddocosahexaenoicacidincultivatedpacificoysterscrassostreagigas