Cargando…
High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome
Hutchinson–Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305791/ https://www.ncbi.nlm.nih.gov/pubmed/34298947 http://dx.doi.org/10.3390/ijms22147327 |
_version_ | 1783727656551841792 |
---|---|
author | Fafián-Labora, Juan A. Morente-López, Miriam de Toro, Fco. Javier Arufe, María C. |
author_facet | Fafián-Labora, Juan A. Morente-López, Miriam de Toro, Fco. Javier Arufe, María C. |
author_sort | Fafián-Labora, Juan A. |
collection | PubMed |
description | Hutchinson–Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca(2+) was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca(2+) signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca(2+) signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging. |
format | Online Article Text |
id | pubmed-8305791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83057912021-07-25 High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome Fafián-Labora, Juan A. Morente-López, Miriam de Toro, Fco. Javier Arufe, María C. Int J Mol Sci Article Hutchinson–Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca(2+) was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca(2+) signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca(2+) signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging. MDPI 2021-07-07 /pmc/articles/PMC8305791/ /pubmed/34298947 http://dx.doi.org/10.3390/ijms22147327 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fafián-Labora, Juan A. Morente-López, Miriam de Toro, Fco. Javier Arufe, María C. High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome |
title | High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome |
title_full | High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome |
title_fullStr | High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome |
title_full_unstemmed | High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome |
title_short | High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome |
title_sort | high-throughput screen detects calcium signaling dysfunction in hutchinson-gilford progeria syndrome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305791/ https://www.ncbi.nlm.nih.gov/pubmed/34298947 http://dx.doi.org/10.3390/ijms22147327 |
work_keys_str_mv | AT fafianlaborajuana highthroughputscreendetectscalciumsignalingdysfunctioninhutchinsongilfordprogeriasyndrome AT morentelopezmiriam highthroughputscreendetectscalciumsignalingdysfunctioninhutchinsongilfordprogeriasyndrome AT detorofcojavier highthroughputscreendetectscalciumsignalingdysfunctioninhutchinsongilfordprogeriasyndrome AT arufemariac highthroughputscreendetectscalciumsignalingdysfunctioninhutchinsongilfordprogeriasyndrome |