Cargando…
Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors
In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Neverthele...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305792/ https://www.ncbi.nlm.nih.gov/pubmed/34299333 http://dx.doi.org/10.3390/ijms22147714 |
_version_ | 1783727656782528512 |
---|---|
author | Mekni, Nedra Coronnello, Claudia Langer, Thierry Rosa, Maria De Perricone, Ugo |
author_facet | Mekni, Nedra Coronnello, Claudia Langer, Thierry Rosa, Maria De Perricone, Ugo |
author_sort | Mekni, Nedra |
collection | PubMed |
description | In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine learning approach using the support vector machine (SVM) classification. Starting from a dataset of two million commercially available compounds, the model was able to classify two hundred novel chemo-types as potentially active against the viral protease. The compounds labelled as actives by SVM were next evaluated through consensus docking studies on two PDB structures and their binding mode was compared to well-known protease inhibitors. The best five compounds selected by consensus docking were then submitted to molecular dynamics to deepen binding interactions stability. Of note, the compounds selected via SVM retrieved all the most important interactions known in the literature. |
format | Online Article Text |
id | pubmed-8305792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83057922021-07-25 Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors Mekni, Nedra Coronnello, Claudia Langer, Thierry Rosa, Maria De Perricone, Ugo Int J Mol Sci Article In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine learning approach using the support vector machine (SVM) classification. Starting from a dataset of two million commercially available compounds, the model was able to classify two hundred novel chemo-types as potentially active against the viral protease. The compounds labelled as actives by SVM were next evaluated through consensus docking studies on two PDB structures and their binding mode was compared to well-known protease inhibitors. The best five compounds selected by consensus docking were then submitted to molecular dynamics to deepen binding interactions stability. Of note, the compounds selected via SVM retrieved all the most important interactions known in the literature. MDPI 2021-07-19 /pmc/articles/PMC8305792/ /pubmed/34299333 http://dx.doi.org/10.3390/ijms22147714 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mekni, Nedra Coronnello, Claudia Langer, Thierry Rosa, Maria De Perricone, Ugo Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors |
title | Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors |
title_full | Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors |
title_fullStr | Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors |
title_full_unstemmed | Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors |
title_short | Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors |
title_sort | support vector machine as a supervised learning for the prioritization of novel potential sars-cov-2 main protease inhibitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305792/ https://www.ncbi.nlm.nih.gov/pubmed/34299333 http://dx.doi.org/10.3390/ijms22147714 |
work_keys_str_mv | AT mekninedra supportvectormachineasasupervisedlearningfortheprioritizationofnovelpotentialsarscov2mainproteaseinhibitors AT coronnelloclaudia supportvectormachineasasupervisedlearningfortheprioritizationofnovelpotentialsarscov2mainproteaseinhibitors AT langerthierry supportvectormachineasasupervisedlearningfortheprioritizationofnovelpotentialsarscov2mainproteaseinhibitors AT rosamariade supportvectormachineasasupervisedlearningfortheprioritizationofnovelpotentialsarscov2mainproteaseinhibitors AT perriconeugo supportvectormachineasasupervisedlearningfortheprioritizationofnovelpotentialsarscov2mainproteaseinhibitors |