Cargando…
Support Vector Machine as a Supervised Learning for the Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors
In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Neverthele...
Autores principales: | Mekni, Nedra, Coronnello, Claudia, Langer, Thierry, Rosa, Maria De, Perricone, Ugo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305792/ https://www.ncbi.nlm.nih.gov/pubmed/34299333 http://dx.doi.org/10.3390/ijms22147714 |
Ejemplares similares
-
In Silico Insights towards the Identification of NLRP3 Druggable Hot Spots
por: Mekni, Nedra, et al.
Publicado: (2019) -
Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations
por: Nguyen, Trung Hai, et al.
Publicado: (2023) -
A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine
por: Gao, Fei, et al.
Publicado: (2015) -
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
por: Gillani, Zeeshan, et al.
Publicado: (2014) -
Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion
por: Wan, Zhibo, et al.
Publicado: (2021)