Cargando…

Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water Interface

Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing phenomenon that is interesting from both fundamental and practical standpoints. However, in most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations of extra-ligand...

Descripción completa

Detalles Bibliográficos
Autores principales: Shokurov, Alexander V., Kutsybala, Daria S., Kroitor, Andrey P., Dmitrienko, Alexander A., Martynov, Alexander G., Enakieva, Yulia Yu., Tsivadze, Aslan Yu., Selektor, Sofiya L., Gorbunova, Yulia G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305922/
https://www.ncbi.nlm.nih.gov/pubmed/34299430
http://dx.doi.org/10.3390/molecules26144155
Descripción
Sumario:Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing phenomenon that is interesting from both fundamental and practical standpoints. However, in most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations of extra-ligands. Herein we show that CISCO effect can be prompted for the commonly available nickel(II) tetraphenylporphyrinate, NiTPP, upon deposition of this complex at the air/water interface together with a ruthenium(II) phthalocyaninate, CRPcRu(pyz)(2), bearing two axial pyrazine ligands. The latter was used as a molecular guiderail to align Ni···Ru···Ni metal centers for pyrazine coordination upon lateral compression of the system, which helps bring the two macrocycles closer together and forces the formation of Ni–pyz bonds. The fact of Ni(II) porphyrinate switching from low- to high-spin state upon acquiring additional ligands can be conveniently observed in situ via reflection-absorption UV-vis spectroscopy. The reversible nature of this interaction allows for dissociation of Ni–pyz bonds, and thus, change of nickel cation spin state, upon expansion of the monolayer.