Cargando…
Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis
This paper suggests a new method to predict the Remaining Useful Life (RUL) of rolling bearings based on Long Short Term Memory (LSTM), in order to obtain the degradation condition of the rolling bearings and realize the predictive maintenance. The approach is divided into three parts: the first par...
Autores principales: | Hotait, Hassane, Chiementin, Xavier, Rasolofondraibe, Lanto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306013/ https://www.ncbi.nlm.nih.gov/pubmed/34206610 http://dx.doi.org/10.3390/e23070791 |
Ejemplares similares
-
Intelligent Fault Diagnosis of Rolling Element Bearings Based on Modified AlexNet †
por: Mohiuddin, Mohammad, et al.
Publicado: (2023) -
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
Intelligent Diagnosis of Rolling Bearings Fault Based on Multisignal Fusion and MTF-ResNet
por: He, Kecheng, et al.
Publicado: (2023) -
Fault Diagnosis for Abnormal Wear of Rolling Element Bearing Fusing Oil Debris Monitoring
por: Zhao, Yulai, et al.
Publicado: (2023) -
Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN
por: Cui, Wei, et al.
Publicado: (2022)