Cargando…
A New Approach for Fatigue Reliability Analysis of Thin-Walled Structures with DC-ILSSVR
Fatigue analysis is of great significance for thin-walled structures in the spacecraft industry to ensure their service reliability during operation. Due to the complex loadings of thin-walled structures under thermal–structural–acoustic coupling conditions, the calculation cost of finite element (F...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306082/ https://www.ncbi.nlm.nih.gov/pubmed/34300887 http://dx.doi.org/10.3390/ma14143967 |
Sumario: | Fatigue analysis is of great significance for thin-walled structures in the spacecraft industry to ensure their service reliability during operation. Due to the complex loadings of thin-walled structures under thermal–structural–acoustic coupling conditions, the calculation cost of finite element (FE) simulations is relatively expensive. To improve the computational efficiency of dynamic reliability analysis on thin-walled structures to within acceptable accuracy, a novel probabilistic approach named DC-ILSSVR was developed, in which the rotation matrix optimization (RMO) method was used to initially search for the model parameters of least squares support vector regression (LS-SVR). The distributed collaborative (DC) strategy was then introduced to enhance the efficiency of a component suffering from multiple failure modes. Moreover, a numerical example with respect to thin-walled structures was used to validate the proposed method. The results showed that RMO performed on LS-SVR model parameters provided competitive prediction accuracy, and hence the reliability analysis efficiency of thin-walled pipe was significantly improved. |
---|