Cargando…
Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals
SIMPLE SUMMARY: Radiogenomics enables prediction of the status and prognosis of patients using non-invasively obtained imaging data. Current machine learning (ML) methods used in radiogenomics require huge datasets, which involve the handling of large heterogeneous datasets from multiple cohorts/hos...
Autores principales: | Kawaguchi, Risa K., Takahashi, Masamichi, Miyake, Mototaka, Kinoshita, Manabu, Takahashi, Satoshi, Ichimura, Koichi, Hamamoto, Ryuji, Narita, Yoshitaka, Sese, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306149/ https://www.ncbi.nlm.nih.gov/pubmed/34298824 http://dx.doi.org/10.3390/cancers13143611 |
Ejemplares similares
-
Observing deep radiomics for the classification of glioma grades
por: Kobayashi, Kazuma, et al.
Publicado: (2021) -
A New Era of Neuro-Oncology Research Pioneered by Multi-Omics Analysis and Machine Learning
por: Takahashi, Satoshi, et al.
Publicado: (2021) -
Fine-Tuning Approach for Segmentation of Gliomas in Brain Magnetic Resonance Images with a Machine Learning Method to Normalize Image Differences among Facilities
por: Takahashi, Satoshi, et al.
Publicado: (2021) -
HGG-39. CLINICAL CHARACTERISTICS AND OUTCOME OF PATIENTS WITH RADIATION-INDUCED GLIOMA
por: Ohno, Makoto, et al.
Publicado: (2020) -
MPC-11 IDH1/2 MUTATIONS ARE ASSOCIATED WITH SEIZURE ONSET AND VETRY IMAGING IN PATIENTS WITH DIFFUSE GLIOMA VISUALIZING 2-HYDROXYGLUTARATE BY MASS SPECTRUM
por: Ohno, Makoto, et al.
Publicado: (2019)