Cargando…
Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc
Nickel- and zinc-doped TiO(2)(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO(2) expanded the unit cell by 4%. Furthermore, Ni dopant induced the 3d energy levels within TiO(2)(B) band structure and oxygen defects, narrow...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306191/ https://www.ncbi.nlm.nih.gov/pubmed/34203554 http://dx.doi.org/10.3390/nano11071703 |
_version_ | 1783727750944653312 |
---|---|
author | Opra, Denis P. Gnedenkov, Sergey V. Sinebryukhov, Sergey L. Gerasimenko, Andrey V. Ziatdinov, Albert M. Sokolov, Alexander A. Podgorbunsky, Anatoly B. Ustinov, Alexander Yu. Kuryavyi, Valery G. Mayorov, Vitaly Yu. Tkachenko, Ivan A. Sergienko, Valentin I. |
author_facet | Opra, Denis P. Gnedenkov, Sergey V. Sinebryukhov, Sergey L. Gerasimenko, Andrey V. Ziatdinov, Albert M. Sokolov, Alexander A. Podgorbunsky, Anatoly B. Ustinov, Alexander Yu. Kuryavyi, Valery G. Mayorov, Vitaly Yu. Tkachenko, Ivan A. Sergienko, Valentin I. |
author_sort | Opra, Denis P. |
collection | PubMed |
description | Nickel- and zinc-doped TiO(2)(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO(2) expanded the unit cell by 4%. Furthermore, Ni dopant induced the 3d energy levels within TiO(2)(B) band structure and oxygen defects, narrowing the band gap from 3.28 eV (undoped) to 2.70 eV. Oppositely, Zn entered restrictedly into TiO(2)(B), but nonetheless, improves its electronic properties (E(g) is narrowed to 3.21 eV). The conductivity of nickel- (2.24 × 10(−8) S·cm(−1)) and zinc-containing (3.29 × 10(−9) S·cm(−1)) TiO(2)(B) exceeds that of unmodified TiO(2)(B) (1.05 × 10(−10) S·cm(−1)). When tested for electrochemical storage, nickel-doped mesoporous TiO(2)(B) nanobelts exhibited improved electrochemical performance. For lithium batteries, a reversible capacity of 173 mAh·g(−1) was reached after 100 cycles at the current load of 50 mA·g(−1), whereas, for unmodified and Zn-doped samples, around 140 and 151 mAh·g(−1) was obtained. Moreover, Ni doping enhanced the rate capability of TiO(2)(B) nanobelts (104 mAh·g(−1) at a current density of 1.8 A·g(−1)). In terms of sodium storage, nickel-doped TiO(2)(B) nanobelts exhibited improved cycling with a stabilized reversible capacity of 97 mAh·g(−1) over 50 cycles at the current load of 35 mA·g(−1). |
format | Online Article Text |
id | pubmed-8306191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83061912021-07-25 Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc Opra, Denis P. Gnedenkov, Sergey V. Sinebryukhov, Sergey L. Gerasimenko, Andrey V. Ziatdinov, Albert M. Sokolov, Alexander A. Podgorbunsky, Anatoly B. Ustinov, Alexander Yu. Kuryavyi, Valery G. Mayorov, Vitaly Yu. Tkachenko, Ivan A. Sergienko, Valentin I. Nanomaterials (Basel) Article Nickel- and zinc-doped TiO(2)(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO(2) expanded the unit cell by 4%. Furthermore, Ni dopant induced the 3d energy levels within TiO(2)(B) band structure and oxygen defects, narrowing the band gap from 3.28 eV (undoped) to 2.70 eV. Oppositely, Zn entered restrictedly into TiO(2)(B), but nonetheless, improves its electronic properties (E(g) is narrowed to 3.21 eV). The conductivity of nickel- (2.24 × 10(−8) S·cm(−1)) and zinc-containing (3.29 × 10(−9) S·cm(−1)) TiO(2)(B) exceeds that of unmodified TiO(2)(B) (1.05 × 10(−10) S·cm(−1)). When tested for electrochemical storage, nickel-doped mesoporous TiO(2)(B) nanobelts exhibited improved electrochemical performance. For lithium batteries, a reversible capacity of 173 mAh·g(−1) was reached after 100 cycles at the current load of 50 mA·g(−1), whereas, for unmodified and Zn-doped samples, around 140 and 151 mAh·g(−1) was obtained. Moreover, Ni doping enhanced the rate capability of TiO(2)(B) nanobelts (104 mAh·g(−1) at a current density of 1.8 A·g(−1)). In terms of sodium storage, nickel-doped TiO(2)(B) nanobelts exhibited improved cycling with a stabilized reversible capacity of 97 mAh·g(−1) over 50 cycles at the current load of 35 mA·g(−1). MDPI 2021-06-28 /pmc/articles/PMC8306191/ /pubmed/34203554 http://dx.doi.org/10.3390/nano11071703 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Opra, Denis P. Gnedenkov, Sergey V. Sinebryukhov, Sergey L. Gerasimenko, Andrey V. Ziatdinov, Albert M. Sokolov, Alexander A. Podgorbunsky, Anatoly B. Ustinov, Alexander Yu. Kuryavyi, Valery G. Mayorov, Vitaly Yu. Tkachenko, Ivan A. Sergienko, Valentin I. Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc |
title | Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc |
title_full | Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc |
title_fullStr | Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc |
title_full_unstemmed | Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc |
title_short | Enhancing Lithium and Sodium Storage Properties of TiO(2)(B) Nanobelts by Doping with Nickel and Zinc |
title_sort | enhancing lithium and sodium storage properties of tio(2)(b) nanobelts by doping with nickel and zinc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306191/ https://www.ncbi.nlm.nih.gov/pubmed/34203554 http://dx.doi.org/10.3390/nano11071703 |
work_keys_str_mv | AT opradenisp enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT gnedenkovsergeyv enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT sinebryukhovsergeyl enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT gerasimenkoandreyv enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT ziatdinovalbertm enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT sokolovalexandera enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT podgorbunskyanatolyb enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT ustinovalexanderyu enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT kuryavyivaleryg enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT mayorovvitalyyu enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT tkachenkoivana enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc AT sergienkovalentini enhancinglithiumandsodiumstoragepropertiesoftio2bnanobeltsbydopingwithnickelandzinc |