Cargando…
Highly Effective Self-Propagating Synthesis of Lamellar ZnO-Decorated MnO(2) Nanocrystals with Improved Supercapacitive Performance
A series of MO(x) (M = Co, Ni, Zn, Ce)-modified lamellar MnO(2) electrode materials were controllably synthesized with a superfast self-propagating technology and their electrochemical practicability was evaluated using a three-electrode system. The results demonstrated that the specific capacitance...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306293/ https://www.ncbi.nlm.nih.gov/pubmed/34202409 http://dx.doi.org/10.3390/nano11071680 |
Sumario: | A series of MO(x) (M = Co, Ni, Zn, Ce)-modified lamellar MnO(2) electrode materials were controllably synthesized with a superfast self-propagating technology and their electrochemical practicability was evaluated using a three-electrode system. The results demonstrated that the specific capacitance varied with the heteroatom type as well as the doping level. The low ZnO doping level was more beneficial for improving electrical conductivity and structural stability, and Mn10Zn hybrid nanocrystals exhibited a high specific capacitance of 175.3 F·g(−1) and capacitance retention of 96.9% after 2000 cycles at constant current of 0.2 A·g(−1). Moreover, XRD, SEM, and XPS characterizations confirmed that a small part of the heteroatoms entered the framework to cause lattice distortion of MnO(2), while the rest dispersed uniformly on the surface of the carrier to form an interfacial collaborative effect. All of them induced enhanced electrical conductivity and electrochemical properties. Thus, the current work provides an ultrafast route for development of high-performance pseudocapacitive energy storage nanomaterials. |
---|