Cargando…

Personalized bioconversion of Panax notoginseng saponins mediated by gut microbiota between two different diet-pattern healthy subjects

BACKGROUND: Panax notoginseng saponins (PNS) as the main effective substances from P. notoginseng with low bioavailability could be bio-converted by human gut microbiota. In our previous study, PNS metabolic variations mediated by gut microbiota have been observed between high fat, high protein (HF-...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Li, Chen, Man-Yun, Shao, Li, Zhang, Wei, Li, Xiang-Ping, Huang, Wei-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306348/
https://www.ncbi.nlm.nih.gov/pubmed/34301288
http://dx.doi.org/10.1186/s13020-021-00476-5
Descripción
Sumario:BACKGROUND: Panax notoginseng saponins (PNS) as the main effective substances from P. notoginseng with low bioavailability could be bio-converted by human gut microbiota. In our previous study, PNS metabolic variations mediated by gut microbiota have been observed between high fat, high protein (HF-HP) and low fat, plant fiber-rich (LF-PF) dietary subjects. In this study, we aimed to correspondingly characterize the relationship between distinct gut microbial species and PNS metabolites. METHODS: Gut microbiota were collected from HF-HP and LF-PF dietary healthy adults and profiled by 16S rRNA gene sequencing. PNS were incubated with gut microbiota in vitro. A LC–MS/MS method was developed to quantify the five main metabolites yields including ginsenoside F(1) (GF(1)), ginsenoside Rh(2) (GRh(2)), ginsenoside compound K (GC-K), protopanaxatriol (PPT) and protopanaxadiol (PPD). The selected microbial species, Bifidobacterium adolescentis and Lactobacillus rhamnosus, were employed to metabolize PNS for the corresponding metabolites. RESULTS: The five main metabolites were significantly different between the two diet groups. Compared with HF-HP group, the microbial genus Blautia, Bifidobacterium, Clostridium, Corynebacterium, Dorea, Enhydrobacter, Lactobacillus, Roseburia, Ruminococcus, SMB53, Streptococcus, Treponema and Weissella were enriched in LF-PF group, while Phascolarctobacterium and Oscillospira were relatively decreased. Furthermore, Spearman’s correlative analysis revealed gut microbials enriched in LF-PF and HF-HP groups were positively and negatively associated with the five metabolites, respectively. CONCLUSIONS: Our data showed gut microbiota diversity led to the personalized bioconversion of PNS. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13020-021-00476-5.