Cargando…
Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction
Background: Myocardial infarction (MI), remains one of the leading causes of death and disability globally but publications on the progression of MI using data from the real world are limited. Multistate models have been widely used to estimate transition rates between disease states to evaluate the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306369/ https://www.ncbi.nlm.nih.gov/pubmed/34299836 http://dx.doi.org/10.3390/ijerph18147385 |
_version_ | 1783727793094262784 |
---|---|
author | Nghiem, Son Williams, Jonathan Afoakwah, Clifford Huynh, Quan Ng, Shu-kay Byrnes, Joshua |
author_facet | Nghiem, Son Williams, Jonathan Afoakwah, Clifford Huynh, Quan Ng, Shu-kay Byrnes, Joshua |
author_sort | Nghiem, Son |
collection | PubMed |
description | Background: Myocardial infarction (MI), remains one of the leading causes of death and disability globally but publications on the progression of MI using data from the real world are limited. Multistate models have been widely used to estimate transition rates between disease states to evaluate the cost-effectiveness of healthcare interventions. We apply a Bayesian multistate hidden Markov model to investigate the progression of MI using a longitudinal dataset from Queensland, Australia. Objective: To apply a new model to investigate the progression of myocardial infarction (MI) and to show the potential to use administrative data for economic evaluation and modeling disease progression. Methods: The cohort includes 135,399 patients admitted to public hospitals in Queensland, Australia, in 2010 treatment of cardiovascular diseases. Any subsequent hospitalizations of these patients were followed until 2015. This study focused on the sub-cohort of 8705 patients hospitalized for MI. We apply a Bayesian multistate hidden Markov model to estimate transition rates between health states of MI patients and adjust for delayed enrolment biases and misclassification errors. We also estimate the association between age, sex, and ethnicity with the progression of MI. Results: On average, the risk of developing Non-ST segment elevation myocardial infarction (NSTEMI) was 8.7%, and ST-segment elevation myocardial infarction (STEMI) was 4.3%. The risk varied with age, sex, and ethnicity. The progression rates to STEMI or NSTEMI were higher among males, Indigenous, or elderly patients. For example, the risk of STEMI among males was 4.35%, while the corresponding figure for females was 3.71%. After adjustment for misclassification, the probability of STEMI increased by 1.2%, while NSTEMI increased by 1.4%. Conclusions: This study shows that administrative health data were useful to estimate factors determining the risk of MI and the progression of this health condition. It also shows that misclassification may cause the incidence of MI to be under-estimated. |
format | Online Article Text |
id | pubmed-8306369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83063692021-07-25 Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction Nghiem, Son Williams, Jonathan Afoakwah, Clifford Huynh, Quan Ng, Shu-kay Byrnes, Joshua Int J Environ Res Public Health Article Background: Myocardial infarction (MI), remains one of the leading causes of death and disability globally but publications on the progression of MI using data from the real world are limited. Multistate models have been widely used to estimate transition rates between disease states to evaluate the cost-effectiveness of healthcare interventions. We apply a Bayesian multistate hidden Markov model to investigate the progression of MI using a longitudinal dataset from Queensland, Australia. Objective: To apply a new model to investigate the progression of myocardial infarction (MI) and to show the potential to use administrative data for economic evaluation and modeling disease progression. Methods: The cohort includes 135,399 patients admitted to public hospitals in Queensland, Australia, in 2010 treatment of cardiovascular diseases. Any subsequent hospitalizations of these patients were followed until 2015. This study focused on the sub-cohort of 8705 patients hospitalized for MI. We apply a Bayesian multistate hidden Markov model to estimate transition rates between health states of MI patients and adjust for delayed enrolment biases and misclassification errors. We also estimate the association between age, sex, and ethnicity with the progression of MI. Results: On average, the risk of developing Non-ST segment elevation myocardial infarction (NSTEMI) was 8.7%, and ST-segment elevation myocardial infarction (STEMI) was 4.3%. The risk varied with age, sex, and ethnicity. The progression rates to STEMI or NSTEMI were higher among males, Indigenous, or elderly patients. For example, the risk of STEMI among males was 4.35%, while the corresponding figure for females was 3.71%. After adjustment for misclassification, the probability of STEMI increased by 1.2%, while NSTEMI increased by 1.4%. Conclusions: This study shows that administrative health data were useful to estimate factors determining the risk of MI and the progression of this health condition. It also shows that misclassification may cause the incidence of MI to be under-estimated. MDPI 2021-07-10 /pmc/articles/PMC8306369/ /pubmed/34299836 http://dx.doi.org/10.3390/ijerph18147385 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nghiem, Son Williams, Jonathan Afoakwah, Clifford Huynh, Quan Ng, Shu-kay Byrnes, Joshua Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction |
title | Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction |
title_full | Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction |
title_fullStr | Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction |
title_full_unstemmed | Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction |
title_short | Can Administrative Health Data Improve the Gold Standard? Evidence from a Model of the Progression of Myocardial Infarction |
title_sort | can administrative health data improve the gold standard? evidence from a model of the progression of myocardial infarction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306369/ https://www.ncbi.nlm.nih.gov/pubmed/34299836 http://dx.doi.org/10.3390/ijerph18147385 |
work_keys_str_mv | AT nghiemson canadministrativehealthdataimprovethegoldstandardevidencefromamodeloftheprogressionofmyocardialinfarction AT williamsjonathan canadministrativehealthdataimprovethegoldstandardevidencefromamodeloftheprogressionofmyocardialinfarction AT afoakwahclifford canadministrativehealthdataimprovethegoldstandardevidencefromamodeloftheprogressionofmyocardialinfarction AT huynhquan canadministrativehealthdataimprovethegoldstandardevidencefromamodeloftheprogressionofmyocardialinfarction AT ngshukay canadministrativehealthdataimprovethegoldstandardevidencefromamodeloftheprogressionofmyocardialinfarction AT byrnesjoshua canadministrativehealthdataimprovethegoldstandardevidencefromamodeloftheprogressionofmyocardialinfarction |