Cargando…

Genomic Association vs. Serological Determination of ABO Blood Types in a Chinese Cohort, with Application in Mendelian Randomization

ABO blood system is an inborn trait determined by the ABO gene. The genetic-phenotypic mechanism underneath the four mutually exclusive and collectively exhaustive types of O, A, B and AB could theoretically be elucidated. However, genetic polymorphisms in the human populations render the link elusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mengqiao, Gao, Jiaqi, Liu, Jin, Zhao, Xing, Lei, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306414/
https://www.ncbi.nlm.nih.gov/pubmed/34202464
http://dx.doi.org/10.3390/genes12070959
Descripción
Sumario:ABO blood system is an inborn trait determined by the ABO gene. The genetic-phenotypic mechanism underneath the four mutually exclusive and collectively exhaustive types of O, A, B and AB could theoretically be elucidated. However, genetic polymorphisms in the human populations render the link elusive, and importantly, past studies using genetically determined rather than biochemically determined ABO types were not and could not be evaluated for the inference errors. Upon both blood-typing and genotyping a cohort of 1008 people of the Han Chinese population, we conducted a genome-wide association study in parallel with both binomial and multinomial log-linear models. Significant genetic variants are all mapped to the ABO gene, and are quantitatively evaluated for binary and multi-class classification performances. Three single nucleotide polymorphisms of rs8176719, rs635634 and rs7030248 would together be sufficient to establish a multinomial predictive model that achieves high accuracy (0.98) and F1 scores (micro 0.99 and macro 0.97). Using the set of identified ABO-associated genetic variants as instrumental variables, we demonstrate the application in causal analysis by Mendelian randomization (MR) studies on blood pressures (one-sample MR) and severe COVID-19 with respiratory failure (two-sample MR).