Cargando…
Aging-Related Tau Astrogliopathy in Aging and Neurodegeneration
Astrocytes are of vital importance to neuronal function and the health of the central nervous system (CNS), and astrocytic dysfunction as a primary or secondary event may predispose to neurodegeneration. Until recently, the main astrocytic tauopathies were the frontotemporal lobar degeneration with...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306417/ https://www.ncbi.nlm.nih.gov/pubmed/34356161 http://dx.doi.org/10.3390/brainsci11070927 |
Sumario: | Astrocytes are of vital importance to neuronal function and the health of the central nervous system (CNS), and astrocytic dysfunction as a primary or secondary event may predispose to neurodegeneration. Until recently, the main astrocytic tauopathies were the frontotemporal lobar degeneration with tau (FTLD-tau) group of disorders; however, aging-related tau astrogliopathy (ARTAG) has now been defined. This condition is a self-describing neuropathology mainly found in individuals over 60 years of age. Astrocytic tau accumulates with a thorny or granular/fuzzy morphology and is commonly found in normal aging as well as coexisting with diverse neurodegenerative disorders. However, there are still many unknown factors associated with ARTAG, including the cause/s, the progression, and the nature of any clinical associations. In addition to FTLD-tau, ARTAG has recently been associated with chronic traumatic encephalopathy (CTE), where it has been proposed as a potential precursor to these conditions, with the different ARTAG morphological subtypes perhaps having separate etiologies. This is an emerging area of exciting research that encompasses complex neurobiological and clinicopathological investigation. |
---|