Cargando…
Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches
Diabetes mellitus is one of the most common human diseases worldwide and may cause several health-related complications. It is responsible for considerable morbidity, mortality, and economic loss. A timely diagnosis and prediction of this disease could provide patients with an opportunity to take th...
Autores principales: | Joshi, Ram D., Dhakal, Chandra K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306487/ https://www.ncbi.nlm.nih.gov/pubmed/34299797 http://dx.doi.org/10.3390/ijerph18147346 |
Ejemplares similares
-
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Prediction of preterm birth in nulliparous women using logistic regression and machine learning
por: Arabi Belaghi, Reza, et al.
Publicado: (2021) -
Prediction of type 2 diabetes mellitus onset using logistic regression-based scorecards
por: Edlitz, Yochai, et al.
Publicado: (2022) -
Machine Learning: An Approach in Identifying Risk Factors for Coercion Compared to Binary Logistic Regression
por: Hotzy, Florian, et al.
Publicado: (2018) -
Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
por: Jang, Su-Kyeong, et al.
Publicado: (2020)