Cargando…
Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures
In this paper, a spectrometer design enabling an ultrathin form factor is proposed. Local strain engineering in group III-nitride semiconductor nanostructured light-absorbing elements enables the integration of a large number of photodetectors on the chip exhibiting different absorption cut-off wave...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306676/ https://www.ncbi.nlm.nih.gov/pubmed/34203175 http://dx.doi.org/10.3390/mi12070760 |
Sumario: | In this paper, a spectrometer design enabling an ultrathin form factor is proposed. Local strain engineering in group III-nitride semiconductor nanostructured light-absorbing elements enables the integration of a large number of photodetectors on the chip exhibiting different absorption cut-off wavelengths. The introduction of a simple cone-shaped back-reflector at the bottom side of the substrate enables a high light-harvesting efficiency design, which also improves the accuracy of spectral reconstruction. The cone-shaped back-reflector can be readily fabricated using mature patterned sapphire substrate processes. Our design was validated via numerical simulations with experimentally measured photodetector responsivities as the input. A light-harvesting efficiency as high as 60% was achieved with five InGaN/GaN multiple quantum wells for the visible wavelengths. |
---|