Cargando…
The Shannon–McMillan Theorem Proves Convergence to Equiprobability of Boltzmann’s Microstates
This paper shows that, for a large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the W microstates of the famous Boltzmann–Planck entropy formula S = k log(W) is proved by the Shannon–McMillan theorem, a cornerstone of informat...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306686/ https://www.ncbi.nlm.nih.gov/pubmed/34356440 http://dx.doi.org/10.3390/e23070899 |
Sumario: | This paper shows that, for a large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the W microstates of the famous Boltzmann–Planck entropy formula S = k log(W) is proved by the Shannon–McMillan theorem, a cornerstone of information theory. This result further strengthens the link between information theory and statistical mechanics. |
---|