Cargando…

The Shannon–McMillan Theorem Proves Convergence to Equiprobability of Boltzmann’s Microstates

This paper shows that, for a large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the W microstates of the famous Boltzmann–Planck entropy formula S = k log(W) is proved by the Shannon–McMillan theorem, a cornerstone of informat...

Descripción completa

Detalles Bibliográficos
Autor principal: Spalvieri, Arnaldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306686/
https://www.ncbi.nlm.nih.gov/pubmed/34356440
http://dx.doi.org/10.3390/e23070899
Descripción
Sumario:This paper shows that, for a large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the W microstates of the famous Boltzmann–Planck entropy formula S = k log(W) is proved by the Shannon–McMillan theorem, a cornerstone of information theory. This result further strengthens the link between information theory and statistical mechanics.