Cargando…

Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel

The absence of chemotherapeutic target hormone receptors in breast cancer is descriptive of the commonly known triple-negative breast cancer (TNBC) subtype. TNBC remains one of the most aggressive invasive breast cancers, with the highest mortality rates in African American women. Therefore, new dru...

Descripción completa

Detalles Bibliográficos
Autores principales: Gangapuram, Madhavi, Mazzio, Elizabeth A., Redda, Kinfe K., Soliman, Karam F. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306781/
https://www.ncbi.nlm.nih.gov/pubmed/34299315
http://dx.doi.org/10.3390/ijms22147694
_version_ 1783727893201813504
author Gangapuram, Madhavi
Mazzio, Elizabeth A.
Redda, Kinfe K.
Soliman, Karam F. A.
author_facet Gangapuram, Madhavi
Mazzio, Elizabeth A.
Redda, Kinfe K.
Soliman, Karam F. A.
author_sort Gangapuram, Madhavi
collection PubMed
description The absence of chemotherapeutic target hormone receptors in breast cancer is descriptive of the commonly known triple-negative breast cancer (TNBC) subtype. TNBC remains one of the most aggressive invasive breast cancers, with the highest mortality rates in African American women. Therefore, new drug therapies are continually being explored. Microtubule-targeting agents such as paclitaxel (Taxol) interfere with microtubules dynamics, induce mitotic arrest, and remain a first-in-class adjunct drug to treat TNBC. Recently, we synthesized a series of small molecules of substituted tetrahydroisoquinolines (THIQs). The lead compound of this series, with the most potent cytostatic effect, was identified as 4-Ethyl-N-(7-hydroxy-3,4-dihydroisoquinolin-2(1H)-yl) benzamide (GM-4-53). In our previous work, GM-4-53 was similar to paclitaxel in its capacity to completely abrogate cell cycle in MDA-MB-231 TNBC cells, with the former not impairing tubulin depolymerization. Given that GM-4-53 is a cytostatic agent, and little is known about its mechanism of action, here, we elucidate differences and similarities to paclitaxel by evaluating whole-transcriptome microarray data in MDA-MB-231 cells. The data obtained show that both drugs were cytostatic at non-toxic concentrations and caused deformed morphological cytoskeletal enlargement in 2D cultures. In 3D cultures, the data show greater core penetration, observed by GM-4-53, than paclitaxel. In concentrations where the drugs entirely blocked the cell cycle, the transcriptome profile of the 48,226 genes analyzed (selection criteria: (p-value, FDR p-value < 0.05, fold change −2< and >2)), paclitaxel evoked 153 differentially expressed genes (DEGs), GM-4-53 evoked 243 DEGs, and, of these changes, 52/153 paclitaxel DEGs were also observed by GM-4-53, constituting a 34% overlap. The 52 DEGS analysis by String database indicates that these changes involve transcripts that influence microtubule spindle formation, chromosome segregation, mitosis/cell cycle, and transforming growth factor-β (TGF-β) signaling. Of interest, both drugs effectively downregulated “inhibitor of DNA binding, dominant negative helix-loop-helix” (ID) transcripts; ID1, ID3 and ID4, and amphiregulin (AREG) and epiregulin (EREG) transcripts, which play a formidable role in cell division. Given the efficient solubility of GM-4-53, its low molecular weight (MW; 296), and capacity to penetrate a small solid tumor mass and effectively block the cell cycle, this drug may have future therapeutic value in treating TNBC or other cancers. Future studies will be required to evaluate this drug in preclinical models.
format Online
Article
Text
id pubmed-8306781
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83067812021-07-25 Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel Gangapuram, Madhavi Mazzio, Elizabeth A. Redda, Kinfe K. Soliman, Karam F. A. Int J Mol Sci Article The absence of chemotherapeutic target hormone receptors in breast cancer is descriptive of the commonly known triple-negative breast cancer (TNBC) subtype. TNBC remains one of the most aggressive invasive breast cancers, with the highest mortality rates in African American women. Therefore, new drug therapies are continually being explored. Microtubule-targeting agents such as paclitaxel (Taxol) interfere with microtubules dynamics, induce mitotic arrest, and remain a first-in-class adjunct drug to treat TNBC. Recently, we synthesized a series of small molecules of substituted tetrahydroisoquinolines (THIQs). The lead compound of this series, with the most potent cytostatic effect, was identified as 4-Ethyl-N-(7-hydroxy-3,4-dihydroisoquinolin-2(1H)-yl) benzamide (GM-4-53). In our previous work, GM-4-53 was similar to paclitaxel in its capacity to completely abrogate cell cycle in MDA-MB-231 TNBC cells, with the former not impairing tubulin depolymerization. Given that GM-4-53 is a cytostatic agent, and little is known about its mechanism of action, here, we elucidate differences and similarities to paclitaxel by evaluating whole-transcriptome microarray data in MDA-MB-231 cells. The data obtained show that both drugs were cytostatic at non-toxic concentrations and caused deformed morphological cytoskeletal enlargement in 2D cultures. In 3D cultures, the data show greater core penetration, observed by GM-4-53, than paclitaxel. In concentrations where the drugs entirely blocked the cell cycle, the transcriptome profile of the 48,226 genes analyzed (selection criteria: (p-value, FDR p-value < 0.05, fold change −2< and >2)), paclitaxel evoked 153 differentially expressed genes (DEGs), GM-4-53 evoked 243 DEGs, and, of these changes, 52/153 paclitaxel DEGs were also observed by GM-4-53, constituting a 34% overlap. The 52 DEGS analysis by String database indicates that these changes involve transcripts that influence microtubule spindle formation, chromosome segregation, mitosis/cell cycle, and transforming growth factor-β (TGF-β) signaling. Of interest, both drugs effectively downregulated “inhibitor of DNA binding, dominant negative helix-loop-helix” (ID) transcripts; ID1, ID3 and ID4, and amphiregulin (AREG) and epiregulin (EREG) transcripts, which play a formidable role in cell division. Given the efficient solubility of GM-4-53, its low molecular weight (MW; 296), and capacity to penetrate a small solid tumor mass and effectively block the cell cycle, this drug may have future therapeutic value in treating TNBC or other cancers. Future studies will be required to evaluate this drug in preclinical models. MDPI 2021-07-19 /pmc/articles/PMC8306781/ /pubmed/34299315 http://dx.doi.org/10.3390/ijms22147694 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gangapuram, Madhavi
Mazzio, Elizabeth A.
Redda, Kinfe K.
Soliman, Karam F. A.
Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel
title Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel
title_full Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel
title_fullStr Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel
title_full_unstemmed Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel
title_short Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel
title_sort transcriptome profile analysis of triple-negative breast cancer cells in response to a novel cytostatic tetrahydroisoquinoline compared to paclitaxel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306781/
https://www.ncbi.nlm.nih.gov/pubmed/34299315
http://dx.doi.org/10.3390/ijms22147694
work_keys_str_mv AT gangapurammadhavi transcriptomeprofileanalysisoftriplenegativebreastcancercellsinresponsetoanovelcytostatictetrahydroisoquinolinecomparedtopaclitaxel
AT mazzioelizabetha transcriptomeprofileanalysisoftriplenegativebreastcancercellsinresponsetoanovelcytostatictetrahydroisoquinolinecomparedtopaclitaxel
AT reddakinfek transcriptomeprofileanalysisoftriplenegativebreastcancercellsinresponsetoanovelcytostatictetrahydroisoquinolinecomparedtopaclitaxel
AT solimankaramfa transcriptomeprofileanalysisoftriplenegativebreastcancercellsinresponsetoanovelcytostatictetrahydroisoquinolinecomparedtopaclitaxel