Cargando…

Defensive Traits during White Spruce (Picea glauca) Leaf Ontogeny

SIMPLE SUMMARY: Leaves can only toughen after they have finished growing and, as a result, many herbivorous insects specialize in newly developing leaves because softer leaves are easier to chew. The foliage of conifer trees is particularly tough, and so one would expect conifers to invest more defe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lirette, Antoine-Olivier, Despland, Emma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306798/
https://www.ncbi.nlm.nih.gov/pubmed/34357304
http://dx.doi.org/10.3390/insects12070644
Descripción
Sumario:SIMPLE SUMMARY: Leaves can only toughen after they have finished growing and, as a result, many herbivorous insects specialize in newly developing leaves because softer leaves are easier to chew. The foliage of conifer trees is particularly tough, and so one would expect conifers to invest more defensive chemicals into soft vulnerable growing needles than into tough mature ones. We summarize the literature describing how chemical defenses of foliage change during the growing season in white spruce, an economically important conifer tree. We next report measurements of the toughness of white spruce buds as they swell, burst, and grow into young needles. As expected, buds soften as they swell in spring, but after budburst, needles become tougher until they are similar to previous-year foliage in mid-summer. Leaves grown in the sun are slightly tougher than leaves grown in the shade. However, there was no indication that trees invest more in chemical defense of growing leaves than of mature leaves. ABSTRACT: Changes during leaf ontogeny affect palatability to herbivores, such that many insects, including the eastern spruce budworm (Choristoneura fumiferana (Clem.)), are specialist feeders on growing conifer leaves and buds. Developmental constraints imply lower toughness in developing foliage, and optimal defense theory predicts higher investment in chemical defense in these vulnerable yet valuable developing leaves. We summarize the literature on the time course of defensive compounds in developing white spruce (Picea glauca (Moench) Voss) needles and report original research findings on the ontogeny of white spruce needle toughness. Our results show the predicted pattern of buds decreasing in toughness followed by leaves increasing in toughness during expansion, accompanied by opposite trends in water content. Toughness of mature foliage decreased slightly during the growing season, with no significant relationship with water content. Toughness of sun-grown leaves was slightly higher than that of shade-grown leaves. However, the literature review did not support the expected pattern of higher defensive compounds in expanding leaves than in mature leaves, suggesting that white spruce might instead exhibit a fast-growth low-defense strategy.