Cargando…
Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation?
Effective, robust, and automatic tools for brain tumor segmentation are needed for the extraction of information useful in treatment planning. Recently, convolutional neural networks have shown remarkable performance in the identification of tumor regions in magnetic resonance (MR) images. Context-a...
Autores principales: | Tampu, Iulian Emil, Haj-Hosseini, Neda, Eklund, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306843/ https://www.ncbi.nlm.nih.gov/pubmed/34201964 http://dx.doi.org/10.3390/diagnostics11071159 |
Ejemplares similares
-
Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images
por: Tampu, Iulian Emil, et al.
Publicado: (2022) -
Brain tumour segmentation based on an improved U-Net
por: Zheng, Ping, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net
por: Li, Shidong, et al.
Publicado: (2022) -
Segmentation of roots in soil with U-Net
por: Smith, Abraham George, et al.
Publicado: (2020)