Cargando…
New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin
An analytical procedure regarding the determination of selenium(IV) by anodic stripping voltammetry exploiting the in situ plated bismuth film electrode is described. Since organics are commonly present in untreated natural water samples, the use of Amberlite XAD-7 resin turns out to be quite import...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306861/ https://www.ncbi.nlm.nih.gov/pubmed/34299404 http://dx.doi.org/10.3390/molecules26144130 |
_version_ | 1783727912434794496 |
---|---|
author | Grabarczyk, Małgorzata Adamczyk, Marzena |
author_facet | Grabarczyk, Małgorzata Adamczyk, Marzena |
author_sort | Grabarczyk, Małgorzata |
collection | PubMed |
description | An analytical procedure regarding the determination of selenium(IV) by anodic stripping voltammetry exploiting the in situ plated bismuth film electrode is described. Since organics are commonly present in untreated natural water samples, the use of Amberlite XAD-7 resin turns out to be quite important to avoid problems such as the adsorption of these compounds on the working electrode. The optimum circumstances for the detection of selenium in water using differential pulse voltammetry techniques were found to be as follows: 0.1 mol L(−1) acetic acid, 1.9 × 10(−5) mol L(−1) Bi(III), 0.1 g Amberlite XAD-7 resin, and successive potentials of −1.6 V for 5 s and −0.4 V for 60 s, during which the in situ formation of the bismuth film on glassy carbon and the accumulation of selenium took place. The current of the anodic peak varies linearly with the selenium concentration ranging from 3 × 10(−9) mol L(−1) to 3 × 10(−6) mol L(−1) (r = 0.9995), with a detection limit of 8 × 10(−10) mol L(−1). The proposed procedure was used for Se(IV) determination in certified reference materials and natural water samples, and acceptable results and recoveries were obtained. |
format | Online Article Text |
id | pubmed-8306861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83068612021-07-25 New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin Grabarczyk, Małgorzata Adamczyk, Marzena Molecules Article An analytical procedure regarding the determination of selenium(IV) by anodic stripping voltammetry exploiting the in situ plated bismuth film electrode is described. Since organics are commonly present in untreated natural water samples, the use of Amberlite XAD-7 resin turns out to be quite important to avoid problems such as the adsorption of these compounds on the working electrode. The optimum circumstances for the detection of selenium in water using differential pulse voltammetry techniques were found to be as follows: 0.1 mol L(−1) acetic acid, 1.9 × 10(−5) mol L(−1) Bi(III), 0.1 g Amberlite XAD-7 resin, and successive potentials of −1.6 V for 5 s and −0.4 V for 60 s, during which the in situ formation of the bismuth film on glassy carbon and the accumulation of selenium took place. The current of the anodic peak varies linearly with the selenium concentration ranging from 3 × 10(−9) mol L(−1) to 3 × 10(−6) mol L(−1) (r = 0.9995), with a detection limit of 8 × 10(−10) mol L(−1). The proposed procedure was used for Se(IV) determination in certified reference materials and natural water samples, and acceptable results and recoveries were obtained. MDPI 2021-07-07 /pmc/articles/PMC8306861/ /pubmed/34299404 http://dx.doi.org/10.3390/molecules26144130 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grabarczyk, Małgorzata Adamczyk, Marzena New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin |
title | New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin |
title_full | New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin |
title_fullStr | New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin |
title_full_unstemmed | New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin |
title_short | New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin |
title_sort | new strategies for the simple and sensitive voltammetric direct quantification of se(iv) in environmental waters employing bismuth film modified glassy carbon electrode and amberlite resin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306861/ https://www.ncbi.nlm.nih.gov/pubmed/34299404 http://dx.doi.org/10.3390/molecules26144130 |
work_keys_str_mv | AT grabarczykmałgorzata newstrategiesforthesimpleandsensitivevoltammetricdirectquantificationofseivinenvironmentalwatersemployingbismuthfilmmodifiedglassycarbonelectrodeandamberliteresin AT adamczykmarzena newstrategiesforthesimpleandsensitivevoltammetricdirectquantificationofseivinenvironmentalwatersemployingbismuthfilmmodifiedglassycarbonelectrodeandamberliteresin |