Cargando…
Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology
In recent years, the use of psychedelic drugs to study brain dynamics has flourished due to the unique opportunity they offer to investigate the neural mechanisms of conscious perception. Unfortunately, there are many difficulties to conduct experiments on pharmacologically-induced hallucinations, e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306862/ https://www.ncbi.nlm.nih.gov/pubmed/34208923 http://dx.doi.org/10.3390/e23070839 |
_version_ | 1783727912672821248 |
---|---|
author | Greco, Antonino Gallitto, Giuseppe D’Alessandro, Marco Rastelli, Clara |
author_facet | Greco, Antonino Gallitto, Giuseppe D’Alessandro, Marco Rastelli, Clara |
author_sort | Greco, Antonino |
collection | PubMed |
description | In recent years, the use of psychedelic drugs to study brain dynamics has flourished due to the unique opportunity they offer to investigate the neural mechanisms of conscious perception. Unfortunately, there are many difficulties to conduct experiments on pharmacologically-induced hallucinations, especially regarding ethical and legal issues. In addition, it is difficult to isolate the neural effects of psychedelic states from other physiological effects elicited by the drug ingestion. Here, we used the DeepDream algorithm to create visual stimuli that mimic the perception of hallucinatory states. Participants were first exposed to a regular video, followed by its modified version, while recording electroencephalography (EEG). Results showed that the frontal region’s activity was characterized by a higher entropy and lower complexity during the modified video, with respect to the regular one, at different time scales. Moreover, we found an increased undirected connectivity and a greater level of entropy in functional connectivity networks elicited by the modified video. These findings suggest that DeepDream and psychedelic drugs induced similar altered brain patterns and demonstrate the potential of adopting this method to study altered perceptual phenomenology in neuroimaging research. |
format | Online Article Text |
id | pubmed-8306862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83068622021-07-25 Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology Greco, Antonino Gallitto, Giuseppe D’Alessandro, Marco Rastelli, Clara Entropy (Basel) Article In recent years, the use of psychedelic drugs to study brain dynamics has flourished due to the unique opportunity they offer to investigate the neural mechanisms of conscious perception. Unfortunately, there are many difficulties to conduct experiments on pharmacologically-induced hallucinations, especially regarding ethical and legal issues. In addition, it is difficult to isolate the neural effects of psychedelic states from other physiological effects elicited by the drug ingestion. Here, we used the DeepDream algorithm to create visual stimuli that mimic the perception of hallucinatory states. Participants were first exposed to a regular video, followed by its modified version, while recording electroencephalography (EEG). Results showed that the frontal region’s activity was characterized by a higher entropy and lower complexity during the modified video, with respect to the regular one, at different time scales. Moreover, we found an increased undirected connectivity and a greater level of entropy in functional connectivity networks elicited by the modified video. These findings suggest that DeepDream and psychedelic drugs induced similar altered brain patterns and demonstrate the potential of adopting this method to study altered perceptual phenomenology in neuroimaging research. MDPI 2021-06-30 /pmc/articles/PMC8306862/ /pubmed/34208923 http://dx.doi.org/10.3390/e23070839 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Greco, Antonino Gallitto, Giuseppe D’Alessandro, Marco Rastelli, Clara Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology |
title | Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology |
title_full | Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology |
title_fullStr | Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology |
title_full_unstemmed | Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology |
title_short | Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology |
title_sort | increased entropic brain dynamics during deepdream-induced altered perceptual phenomenology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306862/ https://www.ncbi.nlm.nih.gov/pubmed/34208923 http://dx.doi.org/10.3390/e23070839 |
work_keys_str_mv | AT grecoantonino increasedentropicbraindynamicsduringdeepdreaminducedalteredperceptualphenomenology AT gallittogiuseppe increasedentropicbraindynamicsduringdeepdreaminducedalteredperceptualphenomenology AT dalessandromarco increasedentropicbraindynamicsduringdeepdreaminducedalteredperceptualphenomenology AT rastelliclara increasedentropicbraindynamicsduringdeepdreaminducedalteredperceptualphenomenology |