Cargando…
The Trifecta of Single-Cell, Systems-Biology, and Machine-Learning Approaches
Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug dis...
Autores principales: | Weiskittel, Taylor M., Correia, Cristina, Yu, Grace T., Ung, Choong Yong, Kaufmann, Scott H., Billadeau, Daniel D., Li, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306972/ https://www.ncbi.nlm.nih.gov/pubmed/34356114 http://dx.doi.org/10.3390/genes12071098 |
Ejemplares similares
-
Uncovering Pharmacological Opportunities for Cancer Stem Cells—A Systems Biology View
por: Correia, Cristina, et al.
Publicado: (2022) -
Machine Learning and Systems Biology Approaches to Characterize Dosage-Based Gene Dependencies in Cancer Cells
por: Meng-Lin, Kevin, et al.
Publicado: (2021) -
Manifold medicine: A schema that expands treatment dimensionality
por: Ung, Choong Yong, et al.
Publicado: (2021) -
Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms
por: Weiskittel, Taylor M., et al.
Publicado: (2023) -
De novo individualized disease modules reveal the synthetic penetrance of genes and inform personalized treatment regimens
por: Weiskittel, Taylor M., et al.
Publicado: (2022)