Cargando…

Quality of Automated Stereotactic Radiosurgery Plans in Patients with 4 to 10 Brain Metastases

SIMPLE SUMMARY: Stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (SRT) are promising treatment options for patients with multiple brain metastases in the current era of personalized medicine. Recent international guidelines propose SRS also in patients with more than th...

Descripción completa

Detalles Bibliográficos
Autores principales: Petoukhova, Anna, Snijder, Roland, Wiggenraad, Rudolf, de Boer-de Wit, Linda, Mudde-van der Wouden, Ivonne, Florijn, Mireille, Zindler, Jaap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307043/
https://www.ncbi.nlm.nih.gov/pubmed/34298671
http://dx.doi.org/10.3390/cancers13143458
Descripción
Sumario:SIMPLE SUMMARY: Stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (SRT) are promising treatment options for patients with multiple brain metastases in the current era of personalized medicine. Recent international guidelines propose SRS also in patients with more than three brain metastases with low-volume disease. Optimal treatment quality with sparing of healthy brain tissue is essential to avoid SRS/SRT complications such as brain necrosis. The aim of this study was to compare linac (linear accelerator)-based SRS/SRT plan quality of automated planning, intensity modulated radiotherapy (IMRT), volumetric modulated arc radiotherapy (VMAT) and manually planned dynamic conformal arc (DCA) plans as well as single- and multiple-isocenter techniques. We found that automated planning with DCA or IMRT can make linac-based SRS/SRT plan quality with single isocenter comparable with a manually planned DCA plan with a separate isocenter for each metastasis. ABSTRACT: The purpose was to compare linac-based stereotactic radiosurgery and hypofractionated radiotherapy plan quality of automated planning, intensity modulated radiotherapy (IMRT) and manual dynamic conformal arc (DCA) plans as well as single- and multiple-isocenter techniques for multiple brain metastases (BM). For twelve patients with four to ten BM, seven non-coplanar linac-based plans were created: a manually planned DCA plan with a separate isocenter for each metastasis, a single-isocenter dynamic IMRT plan, an automatically generated single-isocenter volumetric modulated arc radiotherapy (VMAT) plan, four automatically generated single-isocenter DCA plans with three or five couch angles, with high or low sparing of normal tissue. Paddick conformity index, gradient index (GI), mean dose, total V(12Gy) and V(5Gy) of uninvolved brain, number of monitor units (MUs), irradiation time and pass rate were compared. The GI was significantly higher for VMAT than for separate-isocenter, IMRT, and all automatically generated plans. The number of MUs was lowest for VMAT, followed by automatically generated DCA and IMRT plans and highest for manual DCA plans. Irradiation time was the shortest for automatically planned DCA plans. Automatically generated linac-based single-isocenter plans for multiple BM reduce the number of MUs and irradiation time with at least comparable GI and V(5Gy) relative to the reference separate-isocenter DCA plans.